Tissue differences in DNA methylation changes at AHRR in full term low birth weight in maternal blood, placenta and cord blood in Chinese

Placenta ◽  
2017 ◽  
Vol 52 ◽  
pp. 49-57 ◽  
Author(s):  
Fu-Ying Tian ◽  
Marie-France Hivert ◽  
Xiaozhong Wen ◽  
Chuanbo Xie ◽  
Zhongzheng Niu ◽  
...  
2017 ◽  
Vol 9 (2) ◽  
pp. 215-222 ◽  
Author(s):  
D. Montoya-Williams ◽  
J. Quinlan ◽  
C. Clukay ◽  
N. C. Rodney ◽  
D. A. Kertes ◽  
...  

Maternal stress has been linked to low birth weight in newborns. One potential pathway involves epigenetic changes at candidate genes that may mediate the effects of prenatal maternal stress on birth weight. This relationship has been documented in stress-related genes, such as NR3C1. There is less literature exploring the effect of stress on growth-related genes. IGF1 and IGF2 have been implicated in fetal growth and development, though via different mechanisms as IGF2 is under imprinting control. In this study, we tested for associations between prenatal stress, methylation of IGF1 and IGF2, and birth weight. A total of 24 mother–newborn dyads in the Democratic Republic of Congo were enrolled. Ethnographic interviews were conducted with mothers at delivery to gather culturally relevant war-related and chronic stressors. DNA methylation data were generated from maternal venous, cord blood and placental tissue samples. Multivariate regressions were used to test for associations between stress measures, DNA methylation and birth weight in each of the three tissue types. We found an association between IGF2 methylation in maternal blood and birth weight. Previous literature on the relationship between IGF2 methylation and birth weight has focused on methylation at known differentially methylated regions in cord blood or placental samples. Our findings indicate there may be links between the maternal epigenome and low birth weight that rely on mechanisms outside known imprinting pathways. It thus may be important to consider the effect of maternal exposures and epigenetic profiles on birth weight even in the setting of maternally imprinted genes such as IGF2.


Author(s):  
Yu-Fang Huang ◽  
Chia-Huang Chang ◽  
Pei-Jung Chen ◽  
I-Hsuan Lin ◽  
Yen-An Tsai ◽  
...  

Prenatal exposure to bisphenol A (BPA) may increase the risk of abnormal birth outcomes, and DNA methylation might mediate these adverse effects. This study aimed to investigate the effects of maternal BPA exposure on maternal and fetal DNA methylation levels and explore whether epigenetic changes are related to the associations between BPA and low birth weight. We collected urine and blood samples originating from 162 mother-infant pairs in a Taiwanese cohort study. We measured DNA methylation using the Illumina Infinium HumanMethylation 450 BeadChip in 34 maternal blood samples with high and low BPA levels based on the 75th percentile level (9.5 μg/g creatinine). Eighty-seven CpGs with the most differentially methylated probes possibly interacting with BPA exposure or birth weight were selected using two multiple regression models. Ingenuity pathway analysis (IPA) was utilized to narrow down 18 candidate CpGs related to disease categories, including developmental disorders, skeletal and muscular disorders, skeletal and muscular system development, metabolic diseases, and lipid metabolism. We then validated these genes by pyrosequencing, and 8 CpGs met the primer design score requirements in 82 cord blood samples. The associations among low birth weight, BPA exposure, and DNA methylation were analyzed. Exposure to BPA was associated with low birth weight. Analysis of the epigenome-wide findings did not show significant associations between BPA and DNA methylation in cord blood of the 8 CpGs. However, the adjusted odds ratio for the dehydrogenase/reductase member 9 (DHRS9) gene, at the 2nd CG site, in the hypermethylated group was significantly associated with low birth weight. These results support a role of BPA, and possibly DHRS9 methylation, in fetal growth. However, additional studies with larger sample sizes are warranted.


1984 ◽  
Vol 15 (1) ◽  
pp. 27-33
Author(s):  
Cleide Enoir ◽  
Petean Trindade† ◽  
Maria Eneida ◽  
Aiello Sartor† ◽  
Fernando Jose de Nobrega ◽  
...  

2020 ◽  
Author(s):  
Ikuyo Hayashi ◽  
Ken Yamaguchi ◽  
Masahiro Sumitomo ◽  
Kenji Takakura ◽  
Narumi Nagai ◽  
...  

Abstract Objective: Low birth weight (LBW) is a major public health issue as it increases the risk of noncommunicable diseases throughout life. However, the genome-wide DNA methylation patterns of full-term LBW infants (FT-LBWs) are still unclear. This exploratory study aimed to analyze the DNA methylation differences in FT-LBWs compared with those in full-term normal birth weight infants (FT-NBWs) whose mothers were nonsmokers and had no complications. Initially, 702 Japanese women with singleton pregnancies were recruited. Of these, four FT-LBWs and five FT-NBWs were selected as references for DNA methylation analysis, and 862,260 CpGs were assessed using Illumina Infinium MethylationEPIC BeadChip. Gene ontology enrichment analysis was performed using DAVID v6.8 software to identify the biological functions of hyper- and hypomethylated DNA in FT-LBWs. Results: 483 hyper-differentially methylated genes (DMGs) and 35 hypo-DMGs were identified in FT-LBW promoter regions. Hyper-DMGs were annotated to 11 biological processes; “macrophage differentiation” (e.g., CASP8), “apoptotic mitochondrial changes” (e.g., BH3), “nucleotide-excision repair” (e.g., HUS1), and “negative regulation of inflammatory response” (e.g., NLRP12 and SHARPIN). EREG was classified into “ovarian cumulus expansion” within the “organism growth and organization” category. Our data imply that LBW might be associated with epigenetic modifications, which regulate the immune system and cell maturation.


2020 ◽  
Author(s):  
Ikuyo Hayashi ◽  
Ken Yamaguchi ◽  
Masahiro Sumitomo ◽  
Kenji Takakura ◽  
Narumi Nagai ◽  
...  

Abstract Objective: Low birth weight (LBW) is a major public health issue as it results in a higher risk of non-communicable diseases throughout life. However, the genome-wide DNA methylation patterns of LBW full-term infants (FT-LBWs) are still unclear. The aim of this exploratory study was to compare differences in DNA methylation between FT-LBWs and normal birth weight full-term infants (FT-NBWs) whose mothers were non-smokers and non-complication. Results: A total of 702 Japanese singleton pregnancies were recruited. The prevalence of preterm LBW and FT-LBW was 3.4% and 6.1%, respectively. Four FT-LBWs and five FT-NBWs were selected, genome-wide DNA methylation analysis including 862,260 methylation CpGs was performed. 483 hyper-differentially methylated genes (DMGs) and 35 hypo-DMGs were identified in FT-LBW promoter regions. Hyper-DMGs were annotated to 11 biological processes; intriguingly, “macrophage differentiation” (e.g., CASP8 ), “apoptotic mitochondrial changes” (e.g., BH3 ) , “nucleotide-excision repair” (e.g., HUS1 ) , and “negative regulation of inflammatory response” (e.g., NLRP12 and SHARPIN ) were included within the “immune system” and “DNA metabolism and repair” categories. EREG was classified into “ovarian cumulus expansion” within the “organism growth and organization” category. Our data implies that LBW itself could be associated with epigenetic modulation regarding immune system and cell mature.


2021 ◽  
pp. 097321792199140
Author(s):  
Rimjhim Sonowal ◽  
Anamika Jain ◽  
V. Bhargava ◽  
H.D. Khanna ◽  
Ashok Kumar

Objective: The objective of this study was to evaluate the serum levels of various antioxidants, namely, vitamin A and E, superoxide dismutase (SOD), catalase, and glutathione peroxidase (GPx) in the cord blood of term low birth weight (LBW) neonates who required delivery room resuscitation (DRR). Materials and Methods: This case control study included 37 term LBW neonates who needed DRR as cases and 44 term neonates as controls (15 term LBW and 29 term normal birth weight) who did not require resuscitation at birth. Neonates suffering from major congenital malformations, infection, or hemolytic disease were excluded. Standard methods were used to measure the levels of vitamin A, vitamin E, SOD, catalase, and GPx levels in the cord blood. Results: Vitamin A and E levels were significantly low in cases compared to term LBW controls as well as term normal birth weight controls. Levels of SOD, GPx, and catalase were comparable in different study groups. Conclusion: Our study shows that term LBW neonates requiring DRR had significantly low levels of vitamin A and E in their cord blood. This might compromise their ability to tolerate oxidative stress during DRR.


1989 ◽  
Vol 78 (s349) ◽  
pp. 145-145
Author(s):  
S. HATEMI ◽  
H.H. HATEMI ◽  
C. GULBABA ◽  
T. GULBABA ◽  
H. BOZKURT ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document