Influence of SiO2 on the gas-based direct reduction behavior of Hongge vanadium titanomagnetite pellet by hydrogen-rich gases

2021 ◽  
Vol 386 ◽  
pp. 90-97
Author(s):  
Ruiqi Zeng ◽  
Nan Wang ◽  
Wei Li
Author(s):  
Thomas Wolfinger ◽  
Daniel Spreitzer ◽  
Heng Zheng ◽  
Johannes Schenk

AbstractThe reduction behavior of raw and prior-oxidized magnetite iron ore ultra-fines with hydrogen was investigated. Reduction tests were conducted with a thermogravimetric analyzer in a temperature range from 873 K to 1098 K at 1.1 bar absolute, using hydrogen as reducing gas. The experimental results show that a prior oxidation of the magnetite has a positive effect on the reduction behavior because of changing morphology. The apparent activation energies show a turnaround to negative values, depending on the prior oxidation and degree of reduction. A multi-step kinetic analysis based on the model developed by Johnson–Mehl–Avrami was used to reveal the limiting mechanism during reduction. At 873 K and 948 K, the reduction at the initial stage is controlled by nucleation and chemical reaction and in the final stage by nucleation only, for both raw and pre-oxidized magnetites. At higher temperatures, 1023 K and 1098 K, the reduction of raw magnetite is mainly controlled by diffusion. This changes for pre-oxidized magnetite to a mixed controlled mechanism at the initial stage. Processing magnetite iron ore ultra-fines with a hydrogen-based direct reduction technology, lower reduction temperatures and a prior oxidation are recommended, whereby a high degree of oxidation is not necessary.


Sign in / Sign up

Export Citation Format

Share Document