Neoproterozoic quartz monzodiorite–granodiorite association from the Luding–Kangding area: Implications for the interpretation of an active continental margin along the Yangtze Block (South China Block)

2015 ◽  
Vol 267 ◽  
pp. 196-208 ◽  
Author(s):  
Shao-cong Lai ◽  
Jiang-feng Qin ◽  
Ren-Zhi Zhu ◽  
Shao-wei Zhao
2016 ◽  
Vol 342 ◽  
pp. 254-267 ◽  
Author(s):  
Wei Wang ◽  
Mei-Fu Zhou ◽  
Jun-Hong Zhao ◽  
Manoj K. Pandit ◽  
Jian-Ping Zheng ◽  
...  

2019 ◽  
Vol 157 (4) ◽  
pp. 677-689 ◽  
Author(s):  
Binsong Zheng ◽  
Chuanlong Mou ◽  
Renjie Zhou ◽  
Xiuping Wang ◽  
Zhaohui Xiao ◽  
...  

AbstractPermian–Triassic boundary (PTB) volcanic ash beds are widely distributed in South China and were proposed to have a connection with the PTB mass extinction and the assemblage of Pangea. However, their source and tectonic affinity have been highly debated. We present zircon U–Pb ages, trace-element and Hf isotopic data on three new-found PTB volcanic ash beds in the western Hubei area, South China. Laser ablation inductively coupled plasma mass spectrometry U–Pb dating of zircons yields ages of 252.2 ± 3.6 Ma, 251.6 ± 4.9 Ma and 250.4 ± 2.4 Ma for these three volcanic ash beds. Zircons of age c. 240–270 Ma zircons have negative εHf(t) values (–18.17 to –3.91) and Mesoproterozoic–Palaeoproterozoic two-stage Hf model ages (THf2) (1.33–2.23 Ga). Integrated with other PTB ash beds in South China, zircon trace-element signatures and Hf isotopes indicate that they were likely sourced from intermediate to felsic volcanic centres along the Simao–Indochina convergent continental margin. The Qinling convergent continental margin might be another possible source but needs further investigation. Our data support the model that strong convergent margin volcanism took place around South China during late Permian – Early Triassic time, especially in the Simao–Indochina active continental margin and possibly the Qinling active continental margin. These volcanisms overlap temporally with the PTB biocrisis triggered by the Siberian Large Igneous Province. In addition, our data argue that the South China Craton and the Simao–Indochina block had not been amalgamated with the main body of Pangea by late Permian – Early Triassic time.


2020 ◽  
pp. 1-17
Author(s):  
Bo Hui ◽  
Yunpeng Dong ◽  
Feifei Zhang ◽  
Shengsi Sun ◽  
Shuai He

Abstract The Yangtze Block in South China constitutes an important Precambrian landmass in the present East Asian continent. The Neoproterozoic sedimentary successions of the Hengdan Group in the NW Yangtze Block record essential information for deciphering the Neoproterozoic tectonics along the NW margin. However, its depositional age, provenance and tectonic properties remain uncertain. Here, a combined analysis of detrital zircon U–Pb dating and geochemistry is performed on representative samples from the Hengdan Group. Concordant dating results of samples from the bottom and upper parts constrain the maximum depositional age at c. 720 Ma. Detrital zircon age patterns of samples reveal a uniformly pronounced age peak at c. 915–720 Ma, which is consistent with the magmatic pulses in domains at the NW end of the Yangtze Block. In addition, these samples display left-sloping post-Archaean Australian shale (PAAS)-normalized rare-earth element patterns and variable trace element patterns, resembling sediments accumulated in a basin related to an active continental margin geodynamic setting. Provenance analysis reveals that the main sources featured intermediate to felsic components, which experienced rapid erosion and sedimentation. These integrated new investigations, along with previous compilations, indicate that the Hengdan Group might have been deposited in a fore-arc basin controlled by subduction beneath the Bikou Terrane. Thus, such interpretation further supports proposals for subduction-related tectonics along the western margin of the Yangtze Block during the early Neoproterozoic.


2014 ◽  
Vol 151 (6) ◽  
pp. 975-995 ◽  
Author(s):  
JINBAO SU ◽  
SHUWEN DONG ◽  
YUEQIAO ZHANG ◽  
YONG LI ◽  
XUANHUA CHEN ◽  
...  

AbstractFifteen sandstone samples taken from pre-Cretaceous strata of the Yangtze Block are analysed to constrain the evolution of the South China Block, especially the assembly between the Yangtze and Cathaysia blocks. The results show that the maximum depositional age of the Neoproterozoic Lengjiaxi Group adjacent to the Cathaysia Block isc. 830 Ma, differing from that of the Kunyang and Dahongshan groups (> 960 Ma) on the southwestern margin of the Yangtze Block. The detrital zircons from Palaeozoic samples from the Yangtze Block have similar age populations to those in the Cathaysia Block, and they may originate from the Cathaysia Block according to palaeogeographic, palaeocurrent and former research data. The detrital zircons of Middle–Upper Jurassic sandstones in the southwestern and central Yangtze Block yield dominant age populations at 2.0–1.7 Ga and subordinate groups of 2.6–2.4 Ga, 0.8–0.7 Ga and 0.6–0.4 Ga. The Upper Triassic strata may be derived from the southern Yangtze and North China blocks due to the collisions between the Indosina, South China and North China blocks, whereas the Jurassic sediments may be partly derived from uplift and erosion of the Jiangnan Orogen due to an intracontinental orogeny induced by Pacific subduction towards the Eurasia Plate. The detrital age spectra and provenance data for basement in the South China Block are analysed and compared with each other. The South China Block has affinity with Australia not only in the Columbia supercontinent but also in the Rodinia supercontinent. We infer the existence of an ancient orogen under the western Jiangnan Orogen, which may have occurred during the Columbia age, earlier than the Sibao orogeny. This is supported by seismic profile proof from the SinoProbe.


2020 ◽  
Vol 127 ◽  
pp. 103862
Author(s):  
Tao Yu ◽  
Zongqi Wang ◽  
Dongsheng Wang ◽  
Changqian Ma ◽  
Yingli Zhang ◽  
...  

2017 ◽  
Vol 53 (6) ◽  
pp. 2471-2486 ◽  
Author(s):  
Shao-Cong Lai ◽  
Jiang-Feng Qin ◽  
Xiao-Ping Long ◽  
Yong-Fei Li ◽  
Yin-Juan Ju ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document