scholarly journals Enhanced Oil Recovery and Corrosion Inhibition Through a Combined Technology of Gel Treatment for Water Shutoff and Corrosion Inhibitor Huff & Puff in Oil Well

2011 ◽  
Vol 18 ◽  
pp. 7-12 ◽  
Author(s):  
Qing You ◽  
Yongchun Tang ◽  
Benzhe Wang ◽  
Fulin Zhao
2000 ◽  
Vol 19 (2) ◽  
pp. 161-174 ◽  
Author(s):  
William Berry

Robert M. Kleinpell (1905-1986) brought new concepts into oil exploration in California in the late 1920s that enhanced oil recovery. He used basic biostratigraphic principles developed by Albert Oppel (1831-1865) in a study of the ammonite-bearing Jurassic successions in Europe to solve a challenge that faced California's petroleum industry in the 1920s. That challenge was how to recognize a specific stratigraphic position in a sequence of unseen and seemingly unfossiliferous, homogenous California Tertiary strata being perforated by oil-well drilling equipment and how to identify oil-bearing strata from well to well. Kleinpell's insightful use of relevant biostratigraphic principles led to recovery of many millions of barrels of petroleum from California's Tertiary stratigraphic succession. Despite considerable economic success, rarely have geologists outside California's petroleum industry recognized the significance of Kleinpell's economically rewarding application of scientific principle. Furthermore, rarely have American geologists noted the similarity between biostratigraphic practice of most Europeans and that of Kleinpell.


SPE Journal ◽  
2019 ◽  
Vol 24 (03) ◽  
pp. 1037-1056 ◽  
Author(s):  
Abdulkareem M. AlSofi ◽  
Ali M. AlKhatib ◽  
Hassan A. Al-Ajwad ◽  
Qiwei Wang ◽  
Badr H. Zahrani

Summary Review of past chemical-enhanced-oil-recovery (EOR) projects illustrates that chemical-EOR implementation can result in produced-fluid-handling issues. However, in all projects such issues were resolved, mainly through a combination of improved demulsifiers and oversized vessels. In previous work, we have demonstrated the potential of surfactant/polymer flooding for a high-temperature/high-salinity carbonate. In consideration of future plans to pilot the process, further assessments were conducted to evaluate any side effects of these EOR chemicals on upstream facilities and determine mitigation plans if needed. In this work, we initially conduct a critical review of past experience. Then, we investigate the surfactant/polymer compatibility with the additives used in processing facilities for demulsification and scale and corrosion inhibition as well as the possible effect of surfactant/polymer on oil/water separation, metal corrosion, and scale inhibition. For this purpose, we first perform a sensitivity-based simulation study to estimate the volumes of produced EOR chemicals. Second, a compatibility study is conducted to evaluate EOR chemical compatibility with oilfield additives (i.e., demulsifier, corrosion inhibitor, and scale inhibitor). Third, bottle tests are conducted using surfactant/polymer solutions prepared in both injection and produced water to evaluate the effect of EOR chemicals on oil/water separation. Separated-water qualities are also evaluated using solvent extraction followed by ultraviolet (UV) visibility testing. Fourth, static autoclave and dynamic rotating tests are performed to evaluate the possible side effects of EOR chemicals on corrosion inhibition. Finally, static bottle and dynamic tube tests are performed to evaluate the possible side effects of EOR chemicals on scale inhibition; these observations are supported by characterization of precipitates using environmental scanning electron microscopy (ESEM) and X-ray diffraction (XRD). Depending on simulation, the peak polymer and surfactant concentrations at the separation plant are 83 and 40 ppm, respectively. The sensitivity study suggests a worst-case scenario in which peak polymer and surfactant concentrations of 174 and 128 ppm are produced. Compatibility testing confirms the compatibility of EOR chemicals with the additives used in upstream facilities. In those tests, neither precipitation nor phase separation is observed. Bottle tests indicate an overall negligible effect on oil/water-separation speed. However, analyses of separated-water quality indicated a noteworthy deterioration in separated-water qualities. Oil-in-water concentrations increase from 100 to 750 ppm and from 300 to 450 ppm at injection- and produced-water salinities, respectively. Furthermore, corrosion tests suggest that surfactant/polymer presence results in a significant reduction in corrosion rates by 70 and 86% at static and dynamic conditions, respectively, without any pitting issues. Finally, static and dynamic scale-inhibition studies performed at exacerbated conditions suggest that EOR chemicals can reduce the effectiveness of scale inhibitors. In static scaling tests, the effectiveness of the base polyacrylate inhibitor diminishes completely. However, the same degree of inhibition was achieved by switching to phosphonate inhibitors, but at a slightly higher dosage between 5 and 15 mg/L. In dynamic scaling tests, the base polyacrylate inhibitor failed at all tested dosages up to 100 mg/L. However, the alternative phosphonate inhibitors passed at dosages between 20 and 45 mg/L. Such effects can be attributed to changes in scale morphology and polymorphs, as demonstrated by the XRD and ESEM results. On the basis of those results, we conclude that the selected surfactant/polymer implementation will have a manageable effect on separation facilities. Finally, this work provides an experimental protocol to evaluate the potential side effects of a chemical-EOR process on upstream facilities.


2021 ◽  
Vol 73 (09) ◽  
pp. 57-57
Author(s):  
Jonathan Wylde

As production chemists, we are all aware of the overall concepts of improved oil recovery (IOR) and enhanced oil recovery (EOR). Perhaps, though, fewer of us are aware of the different idiosyncrasies that exist within (and even between) these two broad categories of recovery and then how chemistry and chemicals can have an effect upon these processes. I would like to propose that the lines once were quite distinct between IOR and EOR: IOR was a standard waterflood operation, and EOR (from a chemist’s perspective) was the addition of chemistry to that waterflood (typically polymer or surfactant). Nowadays, the science has evolved massively to create many sub-genres of IOR and EOR. A waterflood is rarely just a waterflood anymore. We can alternate water and gas injection. We can add chemical conformance aids to direct better the flow of water. We can change the salinity of the water to promote better wettability for higher recovery factors. The list goes on. One just has to search out the number of EOR papers vs. (pretty much) every other discipline of production chemistry to see the commitment this industry still has to the research of this discipline. In recent years, the focus has tended to move away from deep-reservoir EOR to focus on near-wellbore stimulation. Interestingly, the mechanistic considerations that we make as production chemists are nearly identical in all cases, and significant synergies exist between these subdisciplines. Therefore, from the recent research published by SPE, two focused topics of IOR/EOR have arisen: the use of nanoparticles and the use of water-shutoff technologies. Nanoparticle use is gaining significant traction in the oil and gas industry, and field applications are now being reported. The area of IOR/EOR is no exception. Water shutoff is not a new technology area. However, are these established, production-sustaining IOR techniques seeing a resurgence caused by the headwinds our industry has faced during the COVID-19 pandemic? Recommended additional reading at OnePetro: www.onepetro.org. OTC 30123 - Thermal and Rheological Investigations on N,N’-Methylenebis Acrylamide Cross-Linked Polyacrylamide Nanocomposite Hydrogels for Water-Shutoff Applications by Mohan Raj Keishnan, Alfiasal University, et al. IPTC 20210 - Chemical and Mechanical Water Shutoff in Horizontal Passive ICD Wells: Experience and Lessons Learned in Giant Darcy Reservoir by Mohamed Abdel-Basset, Schlumberger, et al. SPE 203831 - Efficient Preparation of Nanostarch Particles and Mechanism of Enhanced Oil Recovery in Low-Permeability Oil Reservoirs by Lei Zhang, China University of Geosciences, et al.


2013 ◽  
Vol 448-453 ◽  
pp. 4028-4032 ◽  
Author(s):  
Guang Xi Shen ◽  
Ji Ho Lee ◽  
Kun Sang Lee

Regarding the application of enhanced oil recovery (EOR), reservoir heterogeneity leads to early water breakthrough and significant water production, so that substantial cost may be needed to treat the produced water. Gel treatments have been widely used to prevent early water breakthrough and great amount of water production by the modification of permeability. Reservoir wettability gives significant impact on gel treatment. This study is to assess the effect of wettability on the reservoir performance during gel treatment in layered heterogeneous reservoirs. Performances were compared in terms of water-oil ratio and cumulative oil recovery for different wettability conditions. With respect to oil recovery, there is no striking improvement by gel treatment. However, the results indicate that gel process presents 77% decrement of water-oil ratio over waterflood for oil-wet system and 51% for water-wet system. Gel is distributed in reservoir more widely for oil-wet conditions than water-wet conditions, which means the effect of gels is more dominant in oil-wet conditions rather than water-wet conditions.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 112
Author(s):  
Yicheng Wang ◽  
Hanqiao Jiang ◽  
Liang Li ◽  
Lida Wang ◽  
Junjian Li

Novel profile control agents are constantly emerging in the field of enhanced oil recovery, contributing to the extension of a stable production period. However, evaluation performed through conventional core flow experiments is usually inadequate to reveal the in-depth mechanism of profile control agents. Besides, due to different operation and production modes, there is an urgent need for a specific experimental method applicable to horizontal wells in bottom water reservoirs. In this context, this paper describes two models tailored to bottom water reservoirs and investigates the flow characteristics and mechanisms of three water-shutoff agent types. At the pore scale, further study was carried out on the water-shutoff synergism between a gel and an emulsifier. The results show that the gel is present at the edge of the pore body, while the emulsion is blocked in the center of the pore body. Hence, gel that enters a water channel (main flow and accumulation area of emulsion) can cooperate with an emulsion to achieve high-strength water shutoff, making the bottom water that re-invades mainly break through at oil-rich areas. Compared with water shutoff with gel alone (randomly distributed in the breakthrough area), the synergism improves the gel’s ability to select flow channels, inhibits emulsifier channeling, and achieves a remarkable EOR effect.


2016 ◽  
Vol 63 (2) ◽  
pp. 153-159 ◽  
Author(s):  
Yuan Pan ◽  
Fengtao Zhan ◽  
Zhifeng Lu ◽  
Yan Lin ◽  
Zhen Yang ◽  
...  

Purpose – The purpose of this paper is to set out a study of a Mannich base, which was synthesized and used as an acidizing corrosion inhibitor first, and to the corrosion inhibitor mechanism. Design/methodology/approach – A Mannich base, 1-phenyl-3-(1-pyrrolidinyl)-propanone (PHPP), was synthesized with acetophenone, pyrrolidine and formaldehyde at pH = approximately 2-3. The structure of PHPP was characterized by elemental analysis and Fourier transform infrared spectroscopy (FTIR). The corrosion inhibition of PHPP on N80 steel in 15 per cent hydrochloric acid (HCl) was studied by weight loss method, scanning electron microscope (SEM) and energy dispersive X-ray analysis (EDAX), and the adsorption behavior of PHPP on the surface of N80 steel was discussed. Findings – The results showed that the inhibition efficiency reached to 99.8 per cent and corrosion rate was 2.65 g·m-2·h-1 at 0.6 per cent of PHPP concentration in 15 per cent HCl, which indicated that PHPP presented excellent corrosion inhibition performance. The results of SEM and EDAX analysis showed that PHPP could be absorbed on the surface of N80 steel. The adsorption process of PHPP on the surface of N80 steel was chemisorption. This process was spontaneous and obeyed Langmuir adsorption isotherm. Originality/value – It was found that PHPP presented excellent corrosion inhibition performance, and it is practicable to enhance oil production in oilfield development as a oil-well acidizing inhibitor. The study results can provide theoretical guidelines for the development of the inhibitor.


Sign in / Sign up

Export Citation Format

Share Document