scholarly journals Advanced Surface Analysis to Identify Media-Workpiece Contact Modes in a Vibratory Finishing Processes

2021 ◽  
Vol 53 ◽  
pp. 155-161
Author(s):  
Aarush Sood ◽  
Brigid Mullany
2015 ◽  
Vol 105 (06) ◽  
pp. 377-383
Author(s):  
F. Klocke ◽  
R. Brocker ◽  
F. Vits ◽  
P. Mattfeld

Beim Vibrationsgleitschleifen wird der Werkstoffabtrag maßgeblich durch die vorherrschenden Kontaktkräfte zwischen dem Werkstück und den Schleifkörpern bestimmt. Dieser Fachartikel stellt ein Messsystem vor, mit dem die messtechnische Erfassung der Kontaktkräfte beim ungeführten Vibrationsgleitschleifen möglich ist. Ein Alleinstellungsmerkmal ist dabei die vollständig kabellose Ausführung des Messsystems. Somit wurden die Messergebnisse nicht durch Kabel beeinflusst, die üblicherweise für die Energieversorgung und Datenübertragung notwendig sind. Mithilfe dieses Messsystems wurde der Einfluss folgender Prozesseingangsgrößen systematisch untersucht: Schleifkörpergröße, Unwuchtmotordrehzahl, Versatzwinkel der Unwuchtgewichte sowie die Masse des unteren und oberen Unwuchtgewichts auf die Kontaktkräfte.   In vibratory finishing the material removal is influenced by the contact forces between work piece and media. In this paper a measurement system is presented which is able to measure contact forces between work piece and media in unguided vibratory finishing. The unique feature of the measurement system is its completely wireless construction so that the measurement results are not influenced by wires of the force sensor system including the electrical power supply and the data logging. By means of this measurement system, contact forces can be measured in unguided vibratory finishing processes for the first time. Furthermore, the influence of media size and adjustment of the unbalance motor like revolution speed, phase angle and mass distribution between the upper and the lower eccentric weight on the contact forces was investigated.


2017 ◽  
Vol 869 ◽  
pp. 115-127 ◽  
Author(s):  
François M. Torner ◽  
Jayanti Das ◽  
Gerhard Stelzer ◽  
Barbara Linke ◽  
Jörg Seewig

The angle-resolved scattered light sensor OS500 (made by Optosurf in Ettlingen, Germany) is an optical measuring device that is becoming more and more frequently used inindustrial applications and for the characterization of surfaces in general as well as for measuringroughness and shape. The angle-resolved measurement principle allows the statistical distributionof the gradients of a surface, resulting from the reflectance of the light at the flank angles of theareas examined, to be measured and consequently enables the geometric surface texture to beevaluated. Thus the topography of surfaces is not measured; instead the gradients are evaluated.Since the scattered light sensor measures angles and not distances, the sensor is immune to out-ofplanevibrations in the direction of measurement. Another distinct characteristic of the scattered light sensor is the high degree of sensor dynamics, which when combined with the statisticalanalysis of the surface angles, allows even the finest changes in the surface structure to be detected. Accordingly, it makes sense to use the sensor to monitor processes in which the surfaces and their structures change only slightly during the manufacturing process. One such process is so-called vibratory finishing. This process and several other manufacturing processes geared towards sustainable manufacturing methods are being examined by the “Department of Mechanical and Aerospace Engineering” at the University of California, Davis (CA, USA). On the basis of a ray tracing model, simulations calculations, meaning only virtual measurements, will demonstrate the suitability of the sensor for monitoring manufacturing.


Author(s):  
Richard Brocker ◽  
Frederik Vits ◽  
Patrick Mattfeld ◽  
Fritz Klocke

In vibratory finishing the material removal rate is influenced by the contact forces between work piece and media. In this paper a measurement system is presented which is capable of measuring the contact forces between work piece and media in unguided vibratory finishing. The unique feature of the measurement system is its completely wireless construction. The measurement results are not influenced by wires of the force sensor system including the electrical power supply and the data logging. By means of this measurement system, contact forces can be measured in unguided vibratory finishing processes for the first time. Furthermore, the influence of media size and adjustment of the unbalance motor like revolution speed, phase angle and mass distribution between the upper and the lower eccentric weight was investigated.


Author(s):  
Ben Jin Wong ◽  
Ketav Majumdar ◽  
Kunal Ahluwalia ◽  
Swee-Hock Yeo

Previous work on vibratory finishing has led to a better understanding and establishment of the mass finishing processes. Despite the sustained efforts made to date, vibratory finishing remains a field where the findings made have been based largely on empirical evidence. Through force sensor analyses and scanning electron microscopy imaging, in this work a successful attempt has been made in uncovering the underlying science—through first principles of Newtonian physics—behind vibratory finishing, providing explanations for the observations made. Trials were carried out in a high-frequency vibratory bowl, the first of its kind in the vibratory finishing industry. Through these trials, mathematical formulations have been derived, essentially providing a reliable way for the industry to estimate the process cycle time.


2012 ◽  
Vol 565 ◽  
pp. 284-289 ◽  
Author(s):  
Stephen Wan

The aim of this paper is to introduce, in broad strokes, a framework – constructed from a fusion of granular flow (GFD) dynamics, tribology and computational fluid dynamic (CFD) techniques – for the practical analysis of mass finishing processes. The presentation opens with a short introduction to typical mass finishing processes, followed by a brief discussion on their respective correspondences to GFD regimes, and ends which some illustrative results arising from the application of this framework to vibratory finishing, which is perhaps the most industrially pervasive mass finishing process.


CIRP Annals ◽  
2017 ◽  
Vol 66 (1) ◽  
pp. 309-312 ◽  
Author(s):  
B. Mullany ◽  
H. Shahinian ◽  
J. Navare ◽  
F. Azimi ◽  
E. Fleischhauer ◽  
...  

Author(s):  
Maximilian Lachenmaier ◽  
Marius Ohlert ◽  
Daniel Trauth ◽  
Thomas Bergs

Abstract The work bowl acceleration of a vibratory finishing machine is mainly determined by the process input variables, e. g. the mass distribution between the upper and the lower imbalance weights, the offset angle between these imbalance weights and the rotational speed of the imbalance motor. The acceleration of the work bowl has a strong effect on the acceleration of the abrasive media and workpiece within the work bowl and thus on their movement. This movement indirectly determines the contact conditions, contact forces and relative velocities, between the abrasive media and the workpiece. The contact conditions have a strong effect on the material removal rate and the surface roughness of the machined workpieces in a vibratory finishing process. Due to the fact that the contact conditions can hardly be measured during the vibratory finishing process a comprehensive understanding of the transfer behavior of the work bowl acceleration on the acceleration of the abrasive media and the workpiece and thus on the prevailing contact conditions is necessary. Therefore, this publication presents an innovative approach to identify these cause-effect relationships, in order to determine the machining intensity based on the work bowl acceleration as a function of the process input variables. Hence, new measurement systems are presented which enable the determination of the acceleration of the abrasive media and the workpiece as a function of the acceleration of the work bowl of a vibratory finishing machine for the first time. Based on these investigations it is possible to identify significant areas for the work bowl acceleration, as well as for the acceleration of the abrasive media and the workpiece and thus for the contact conditions, contact forces and relative velocities, which can be used for a targeted control of the machining intensity of vibratory finishing processes.


Sign in / Sign up

Export Citation Format

Share Document