Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy

2014 ◽  
Vol 68 ◽  
pp. 893-905 ◽  
Author(s):  
T. Ashuri ◽  
M.B. Zaaijer ◽  
J.R.R.A. Martins ◽  
G.J.W. van Bussel ◽  
G.A.M. van Kuik
Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2728 ◽  
Author(s):  
Longfu Luo ◽  
Xiaofeng Zhang ◽  
Dongran Song ◽  
Weiyi Tang ◽  
Jian Yang ◽  
...  

As onshore wind energy has depleted, the utilization of offshore wind energy has gradually played an important role in globally meeting growing green energy demands. However, the cost of energy (COE) for offshore wind energy is very high compared to the onshore one. To minimize the COE, implementing optimal design of offshore turbines is an effective way, but the relevant studies are lacking. This study proposes a method to minimize the COE of offshore wind turbines, in which two design parameters, including the rated wind speed and rotor radius are optimally designed. Through this study, the relation among the COE and the two design parameters is explored. To this end, based on the power-coefficient power curve model, the annual energy production (AEP) model is designed as a function of the rated wind speed and the Weibull distribution parameters. On the other hand, the detailed cost model of offshore turbines developed by the National Renewable Energy Laboratory is formulated as a function of the rated wind speed and the rotor radius. Then, the COE is formulated as the ratio of the total cost and the AEP. Following that, an iterative method is proposed to search the minimal COE which corresponds to the optimal rated wind speed and rotor radius. Finally, the proposed method has been applied to the wind classes of USA, and some useful findings have been obtained.


Author(s):  
S. Márquez-Domínguez ◽  
J. D. Sørensen

Deeper waters and harsher environments are the main factors that make the electricity generated by offshore wind turbines (OWTs) expensive due to high costs of the substructure, operation & maintenance and installation. The key goal of development is to decrease the cost of energy (CoE). In consequence, a rational treatment of uncertainties is done in order to assess the reliability of critical details in OWTs. Limit state equations are formulated for fatigue critical details which are not influenced by wake effects generated in offshore wind farms. Furthermore, typical bi-linear S-N curves are considered for reliability verification according to international design standards of OWTs. System effects become important for each substructure with many potential fatigue hot spots. Therefore, in this paper a framework for system effects is presented. This information can be e.g. no detection of cracks in inspections or measurements from condition monitoring systems. Finally, an example is established to illustrate the practical application of this framework for jacket type wind turbine substructure considering system effects.


2013 ◽  
Vol 55 ◽  
pp. 69-78 ◽  
Author(s):  
José E. Gutierrez ◽  
Blas Zamora ◽  
Julio García ◽  
María R. Peyrau

Author(s):  
Shuijin Li ◽  
Azin Lamei ◽  
Masoud Hayatdavoodi ◽  
Carlos Wong

Abstract Most of the existing floating offshore wind turbines (FOWT), whether in concept or built, host a single turbine. Structures that can host multiple turbines have received attention in recent years, mainly with the aim of reducing the overall cost of energy production and maintenance. A concept challenge of placing multiple wind turbines on a single floating platform is that under variable wind directions, the leading turbines may block the wind against the trailing turbines. In this work, concept design of a wind-tracing floating structure accommodating three wind turbines is presented. The triangular-shapefloating platform is made of pre-stressed concrete, and the turbines are located on the corners. The floating structure uses a single-point mooring system which allows for the entire structure to rotate in response to the change of wind direction. Due to the particular configuration of the floating structure, it is essential to consider the wind, wave and current loads, along with the response of the structure, simultaneously. Response of the FOWT to simultaneous environmental loads from different directions is studied by use of the constant panel approach of the Green function method, subject to constant wind loads on the turbines and linear mooring loads. We also consider the elasticity of the structure by use of finite element analysis, coupled with the hydro- and aero-dynamic loads and responses.


Sign in / Sign up

Export Citation Format

Share Document