scholarly journals A quantum algorithm based on entanglement measure for classifying Boolean multivariate function into novel hidden classes

2019 ◽  
Vol 15 ◽  
pp. 102549 ◽  
Author(s):  
Mohammed Zidan ◽  
Abdel-Haleem Abdel-Aty ◽  
Duc Manh Nguyen ◽  
Ahmed S.A. Mohamed ◽  
Yazeed Al-Sbou ◽  
...  
2021 ◽  
Vol 4 (1) ◽  
pp. 48-52
Author(s):  
Mohammed Zidan ◽  
◽  
Mahmoud Abdel-Aty ◽  

The algorithm that solves a generalized form of the Deutsch- Jozsa problem was proposed. This algorithm uses the degree of entanglement computing model to classify an arbitrary Oracle Uf to one of the 2n classes. In this paper, we will analyze this algorithm based on the degree of entanglement.


2021 ◽  
Vol 20 (7) ◽  
Author(s):  
Yanbing Zhang ◽  
Tingting Song ◽  
Zhihao Wu

2021 ◽  
Vol 26 ◽  
Author(s):  
T. Berry ◽  
J. Sharpe

Abstract This paper introduces and demonstrates the use of quantum computers for asset–liability management (ALM). A summary of historical and current practices in ALM used by actuaries is given showing how the challenges have previously been met. We give an insight into what ALM may be like in the immediate future demonstrating how quantum computers can be used for ALM. A quantum algorithm for optimising ALM calculations is presented and tested using a quantum computer. We conclude that the discovery of the strange world of quantum mechanics has the potential to create investment management efficiencies. This in turn may lead to lower capital requirements for shareholders and lower premiums and higher insured retirement incomes for policyholders.


2021 ◽  
Vol 2 (1) ◽  
pp. 1-35
Author(s):  
Adrien Suau ◽  
Gabriel Staffelbach ◽  
Henri Calandra

In the last few years, several quantum algorithms that try to address the problem of partial differential equation solving have been devised: on the one hand, “direct” quantum algorithms that aim at encoding the solution of the PDE by executing one large quantum circuit; on the other hand, variational algorithms that approximate the solution of the PDE by executing several small quantum circuits and making profit of classical optimisers. In this work, we propose an experimental study of the costs (in terms of gate number and execution time on a idealised hardware created from realistic gate data) associated with one of the “direct” quantum algorithm: the wave equation solver devised in [32]. We show that our implementation of the quantum wave equation solver agrees with the theoretical big-O complexity of the algorithm. We also explain in great detail the implementation steps and discuss some possibilities of improvements. Finally, our implementation proves experimentally that some PDE can be solved on a quantum computer, even if the direct quantum algorithm chosen will require error-corrected quantum chips, which are not believed to be available in the short-term.


Sign in / Sign up

Export Citation Format

Share Document