scholarly journals A catchment scale evaluation of multiple stressor effects in headwater streams

2013 ◽  
Vol 442 ◽  
pp. 420-431 ◽  
Author(s):  
Jes J. Rasmussen ◽  
Ursula S. McKnight ◽  
Maria C. Loinaz ◽  
Nanna I. Thomsen ◽  
Mikael E. Olsson ◽  
...  
Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 253
Author(s):  
Tomáš Galia

Mountain headwater streams are still somewhat on the boundary of interest regarding possible human impact on their morphology or geomorphic processes, which may be caused by our perception of mountains as islands of relatively preserved natural conditions. This paper summarizes the past and present human pressure on the headwater streams that drain the highest mountain ranges of the Outer Western Carpathians in Czechia. Anthropogenic pressure began in this region in the 16th century during a colonization of the mountains and continued by timber harvesting, timber floating, and construction of torrent control works until present. Each of these interventions produced a morphological response of the channels in relation to altered sediment or water fluxes at the whole catchment scale or within longitudinal stream profiles. Because it is highly unlikely to reach pre-settlement conditions of the channels, the management effort should be concentrated to achieve realistic restoration targets under the present socioeconomic circumstances by taking into consideration the morphodynamical specifics of mountain headwater streams.


2010 ◽  
Vol 35 (8) ◽  
pp. 863-875 ◽  
Author(s):  
GR Hancock ◽  
JBC Lowry ◽  
TJ Coulthard ◽  
KG Evans ◽  
DR Moliere

2017 ◽  
Vol 36 (3) ◽  
pp. 523-532 ◽  
Author(s):  
Daniel L. Hiatt ◽  
Caleb J. Robbins ◽  
Jeffrey A. Back ◽  
Pamela K. Kostka ◽  
Robert D. Doyle ◽  
...  

2004 ◽  
Vol 4 (5-6) ◽  
pp. 199-206
Author(s):  
M. Ribau Teixeira ◽  
H. Lucas ◽  
M.J. Rosa

A rapid small-scale evaluation of ultrafiltration (UF) performance with and without physical–chemical pre-treatment was performed to up-grade the conventional treatment used for drinking water production in Alcantarilha's water treatment works, Algarve, Portugal. Direct UF and pre-ozonation/coagulation/flocculation/sedimentation/UF (O/C/F/S/UF) were evaluated using polysulphone membranes of different apparent molecular weight cut-off (MWCO) (15–47 kDa). The results indicated that (i) UF is an effective barrier against microorganisms, including virus larger than 80 nm; (ii) for surface waters with low to moderate SUVA values, direct UF performance is equivalent or better than the conventional treatment in terms of residual turbidity, while UV254 nm and TOC residuals require the use of O/C/F/S/UF; (iii) the permeate quality improves with the membrane apparent MWCO decrease, especially for the direct UF, although the conventional treatment performance is never reached using UF; (iv) membrane fouling and adsorption phenomena are more severe in direct UF than in O/C/F/S/UF sequence (pre-ozonation decreases the membrane foulants by decreasing their hydrophobicity) and these phenomena increase with the membrane hydraulic permeability and, particularly, with the membrane apparent MWCO.


2007 ◽  
Vol 7 (3) ◽  
pp. 103-110
Author(s):  
C. Schilling ◽  
M. Zessner ◽  
A.P. Blaschke ◽  
D. Gutknecht ◽  
H. Kroiss

Two Austrian case study regions within the Danube basin have been selected for detailed investigations of groundwater and surface water quality at the catchment scale. Water balance calculations have been performed using the conceptual continuous time SWAT 2000 model to characterise catchment hydrology and to identify individual runoff components contributing to river discharge. Nitrogen emission calculations have been performed using the empirical emission model MONERIS to relate individual runoff components to specific nitrogen emissions and for the quantification of total nitrogen emissions to surface waters. Calculated total nitrogen emissions to surface waters using the MONERIS model were significantly influenced by hydrological conditions. For both catchments the groundwater could be identified as major emission pathway of nitrogen emissions to the surface waters. Since most of the nitrogen is emitted by groundwater to the surface water, denitrification in groundwater is of considerable importance reducing nitrogen levels in groundwater along the flow path towards the surface water. An approach was adopted for the grid-oriented estimation of diffuse nitrogen emissions based on calculated groundwater residence time distributions. Denitrification in groundwater was considered using a half life time approach. It could be shown that more than 90% of the total diffuse nitrogen emissions were contributed by areas with low groundwater residence times and short distances to the surface water. Thus, managing diffuse nitrogen emissions the location of catchment areas has to be considered as well as hydrological and hydrogeological conditions, which significantly influence denitrification in the groundwater and reduce nitrogen levels in groundwater on the flow path towards the surface water.


1989 ◽  
Vol 21 (8-9) ◽  
pp. 1015-1024 ◽  
Author(s):  
C. P. Crockett ◽  
R. W. Crabtree ◽  
I. D. Cluckie

In England and Wales the placing of effluent discharge consents within a statistical framework has led to the development of a new hybrid type of river quality model. Such catchment scale consent models have a stochastic component for the generation of model inputs and a deterministic component to route them through the river system. This paper reviews and compares the existing approaches for consent modelling used by various Water Authorities. A number of possible future developments are suggested including the potential need for a national approach to the review and setting of long term consents.


2017 ◽  
Vol 2017 (1) ◽  
pp. 119-138
Author(s):  
Blair Wisdom ◽  
Brad Van Anderson ◽  
Isaac Avila ◽  
Troy Gottschalk ◽  
Kurt Carson ◽  
...  
Keyword(s):  

2017 ◽  
Vol 2017 (9) ◽  
pp. 3032-3061 ◽  
Author(s):  
P.A Marrone ◽  
D.C Elliott ◽  
J.M Billing ◽  
R.T Hallen ◽  
T.R Hart ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document