scholarly journals Detecting and predicting the impact of land use changes on groundwater quality, a case study in Northern Kelantan, Malaysia

2017 ◽  
Vol 599-600 ◽  
pp. 844-853 ◽  
Author(s):  
Tahoora Sheikhy Narany ◽  
Ahmad Zaharin Aris ◽  
Anuar Sefie ◽  
Saskia Keesstra
Land ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 234
Author(s):  
Dong Han ◽  
Jiajun Qiao ◽  
Qiankun Zhu

Rural-spatial restructuring involves the spatial mapping of the current rural development process. The transformation of land-use morphologies, directly or indirectly, affects the practice of rural restructuring. Analyzing this process in terms of the dominant morphology and recessive morphology is helpful for better grasping the overall picture of rural-spatial restructuring. Accordingly, this paper took Zhulin Town in Central China as a case study area. We propose a method for studying rural-spatial restructuring based on changes in the dominant and recessive morphologies of land use. This process was realized by analyzing the distribution and functional suitability of ecological-production-living (EPL) spaces based on land-use types, data on land-use changes obtained over a 30-year observation period, and in-depth research. We found that examining rural-spatial restructuring by matching the distribution of EPL spaces with their functional suitability can help to avoid the misjudgment of the restructuring mode caused by the consideration of the distribution and structural changes in quantity, facilitating greater understanding of the process of rural-spatial restructuring. Although the distribution and quantitative structure of Zhulin’s EPL spaces have changed to differing degrees, ecological- and agricultural-production spaces still predominate, and their functional suitability has gradually increased. The spatial distribution and functional suitability of Zhulin are generally well matched, with 62.5% of the matched types being high-quality growth, and the positive effect of Zhulin’s spatial restructuring over the past 30 years has been significant. We found that combining changes in EPL spatial area and quantity as well as changes in functional suitability is helpful in better understanding the impact of the national macro-policy shift regarding rural development. Sustaining the positive spatial restructuring of rural space requires the timely adjustment of local actors in accordance with the needs of macroeconomic and social development, and a good rural-governance model is essential.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 724 ◽  
Author(s):  
Pankaj Kumar ◽  
Rajarshi Dasgupta ◽  
Brian Johnson ◽  
Chitresh Saraswat ◽  
Mrittika Basu ◽  
...  

Rapid changes in land use and land cover pattern have exerted an irreversible change on different natural resources, and water resources in particular, throughout the world. Khambhat City, located in the Western coastal plain of India, is witnessing a rapid expansion of human settlements, as well as agricultural and industrial activities. This development has led to a massive increase in groundwater use (the only source of potable water in the area), brought about significant changes to land management practices (e.g., increased fertilizer use), and resulted in much greater amounts of household and industrial waste. To better understand the impacts of this development on the local groundwater, this study investigated the relationship between groundwater quality change and land use change over the 2001–2011 period; a time during which rapid development occurred. Water quality measurements from 66 groundwater sampling wells were analyzed for the years 2001 and 2011, and two water quality indicators (NO3− and Cl− concentration) were mapped and correlated against the changes in land use. Our results indicated that the groundwater quality has deteriorated, with both nitrate (NO3−) and chloride (Cl−) levels being elevated significantly. Contour maps of NO3− and Cl− were compared with the land use maps for 2001 and 2011, respectively, to identify the impact of land use changes on water quality. Zonal statistics suggested that conversion from barren land to agricultural land had the most significant negative impact on water quality, demonstrating a positive correlation with accelerated levels of both NO3− and Cl−. The amount of influence of the different land use categories on NO3− increase was, in order, agriculture > bare land > lake > marshland > built-up > river. Whereas, for higher concentration of Cl− in the groundwater, the order of influence of the different land use categories was marshland > built-up > agriculture > bare land > lake > river. This study will help policy planners and decision makers to understand the trend of groundwater development and hence to take timely mitigation measures for its sustainable management.


Agronomy ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 31 ◽  
Author(s):  
Marcos Cordeiro ◽  
Alan Rotz ◽  
Roland Kroebel ◽  
Karen Beauchemin ◽  
Derek Hunt ◽  
...  

Forage production in northern latitudes is challenging and uncertain in the future. In this case-study, the integrated farm system model (IFSM) was used to assess the impact of climate change and cropland expansion scenarios on forage production in a dairy farm in Newfoundland, Canada. Climatic projections indicated increases in temperature in the recent past (1990–2016) and under any future climate (2020–2079), thus enhancing agronomic performance. Temperature increases ranged from 2.8 °C to 5.4 °C in winter and from 3.2 °C to 6.4 °C in spring. Small precipitation increases (<10%) create narrower time windows to perform farm operations in the already stringent condition of excess moisture in the region. Results of land use scenarios including expansions of 20, 30, and 40% in cropland area, out of which 5% was dedicated to corn silage and the remainder to grass-legume mixtures, indicated increased yield and total production. Improvements in grass-legume yield ranged from 8% to 52%. The full range of production increases ranged from 11% to 105%. Increments in corn silage yield ranged from 28% to 69%. Total farm corn silage production increases ranged from 29% to 77%. An attainable cropland expansion of 20% would enable the farm to become self-sufficient in forage production under any climate scenario.


2007 ◽  
Vol 128 (1-3) ◽  
pp. 503-510 ◽  
Author(s):  
Ren-Qiang Li ◽  
Ming Dong ◽  
Jian-Yong Cui ◽  
Li -Li Zhang ◽  
Qing-Guo Cui ◽  
...  

2020 ◽  
Vol 9 (12) ◽  
pp. 708
Author(s):  
Daquan Huang ◽  
Erxuan Chu ◽  
Tao Liu

Studying the factors that influence the expansion of different types of construction land is instrumental in formulating targeted policies and regulations, and can reduce or prevent the negative impacts of unreasonable land use changes. Using land use survey data of Beijing (2001 and 2010), an autologistic model quantitatively analyzed the leading driving forces and differences in four types of construction land expansion (industrial, residential, public service, and commercial land types), focusing on the impact of spatial autocorrelation. The results showed that the influencing factors vary greatly for different types of construction land expansion; the same factor may have a different impact on different construction land, and both planning factors and spatial autocorrelation variables have a significant positive effect on the four types. Accordingly, the municipal government should consider the differences in the expansion mechanisms and driving forces of different construction land and formulate suitable planning schemes, observe the impact of spatial autocorrelation on construction land expansion, and guide spatial agglomeration through policies while appropriately controlling the scale of expansion. The methods and policy recommendations of this research are significant for urban land expansion research and policy formulations in other transition economies and developing countries.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Saadu Umar Wali ◽  
Ibrahim Mustapha Dankani ◽  
Sheikh Danjuma Abubakar ◽  
Murtala Abubakar Gada ◽  
Kabiru Jega Umar ◽  
...  

This review attempted a detailed description of geological and hydrogeological configurations of Cross River and Imo-Akwa Ibo basins. It presented a synthesis of hydrochemistry and a description of the hydrogeological configurations of the two basins. Hydrogeologically, most areas under Cross River and  Imo-Kwa-Ibo are poor in terms of groundwater potentials. Based on the hydrochemistry, the basins hold water of excellent quality.  Groundwater sources fall in soft to moderately hard classes. The entire sources groundwater has a TDS concentration of less than 500 mg/l. Groundwater classification based on electrical conductivity (EC) showed EC levels were less than 500  µS/cm. Most of the examined cations and anions are within WHO reference guidelines for drinking water quality. However, no broad analysis of water quality based on water quality indices. Also, studies modeling pollution or the impact of land use changes on groundwater quality are wanting. Thus, further analysis of the hydrochemistry of groundwater aquifers is recommended.


Sign in / Sign up

Export Citation Format

Share Document