Vein puncture is commonly used for blood sampling, and accurately locating the blood vessel is an important challenge in the field of diagnostic tests. Imaging systems based on near-infrared (NIR) light are widely used for accurate human vein puncture. In particular, segmentation of a region of interest using the obtained NIR image is an important field, and research for improving the image quality by removing noise and enhancing the image contrast is being widely conducted. In this paper, we propose an effective model in which the relative total variation (RTV) regularization algorithm and contrast-limited adaptive histogram equalization (CLAHE) are combined, whereby some major edge information can be better preserved. In our previous study, we developed a miniaturized NIR imaging system using light with a wavelength of 720–1100 nm. We evaluated the usefulness of the proposed algorithm by applying it to images acquired by the developed NIR imaging system. Compared with the conventional algorithm, when the proposed method was applied to the NIR image, the visual evaluation performance and quantitative evaluation performance were enhanced. In particular, when the proposed algorithm was applied, the coefficient of variation was improved by a factor of 15.77 compared with the basic image. The main advantages of our algorithm are the high noise reduction efficiency, which is beneficial for reducing the amount of undesirable information, and better contrast. In conclusion, the applicability and usefulness of the algorithm combining the RTV approach and CLAHE for NIR images were demonstrated, and the proposed model can achieve a high image quality.