Design of a compound parabolic concentrator for a multi-source high-flux solar simulator

Solar Energy ◽  
2019 ◽  
Vol 183 ◽  
pp. 805-811 ◽  
Author(s):  
Lifeng Li ◽  
Bo Wang ◽  
Johannes Pottas ◽  
Wojciech Lipiński
Author(s):  
Katherine R. Krueger ◽  
Jane H. Davidson ◽  
Wojciech Lipin´ski

In this paper, we present a systematic procedure to design a solar simulator for high-temperature concentrated solar thermal and thermo-chemical research. The 45 kWe simulator consists of seven identical radiation units of common focus, each comprised of a 6.5 kWe xenon arc lamp close-coupled to a precision reflector in the shape of a truncated ellipsoid. The size and shape of each reflector is optimized by a Monte Carlo ray tracing analysis to achieve multiple design objectives, including high transfer efficiency of radiation from the lamps to the common focal plane and desired flux distribution. Based on the numerical results, the final optimized design will deliver 7.5 kW over a 6-cm diameter circular disc located in the focal plane, with a peak flux approaching 3.7 MW/m2.


2020 ◽  
Vol 49 (12) ◽  
pp. 1-10
Author(s):  
王昊 Hao WANG ◽  
付跃刚 Yue-gang FU ◽  
张国玉 Guo-yu ZHANG ◽  
孙高飞 Gao-fei SUN ◽  
刘石 Shi LIU ◽  
...  

2018 ◽  
Vol 145 ◽  
pp. 201-211 ◽  
Author(s):  
Jun Xiao ◽  
Xiudong Wei ◽  
Raúl Navío Gilaber ◽  
Yan Zhang ◽  
Zengyao Li
Keyword(s):  

2014 ◽  
Vol 57 ◽  
pp. 590-596 ◽  
Author(s):  
Jian Li ◽  
José Gonzalez-Aguilar ◽  
Carlos Pérez-Rábago ◽  
Hussein Zeaiter ◽  
Manuel Romero

Author(s):  
Roman Bader ◽  
Gaël Levêque ◽  
Sophia Haussener ◽  
Wojciech Lipiński

Author(s):  
Jo¨rg Petrasch ◽  
Aldo Steinfeld

The optical characteristics of a high-flux solar simulator that comprises an array of Xe-arc lamps with ellipsoidal specular reflectors of common focus is examined using the Monte Carlo ray tracing technique. The parameters varied are arc diameter, focal length, eccentricity, truncation diameter, and angular error of specular reflection. The geometrical design of the truncated ellipsoidal reflector is optimized for maximum transfer efficiency, defined as the portion of radiation intercepted by a circular target centered at the common focal point. An array of ten 15 kW Xe-arc lamps of 9 mm electrode gap and 35% electrical-to-radiant efficiency, each closed-coupled with an ellipsoidal reflector of optimum design, should be capable of delivering an average radiative power flux exceeding 5900 kW/m2 over a 6 cm-diameter circular target, with an overall transfer efficiency of 31.9%.


Solar Energy ◽  
2010 ◽  
Vol 84 (12) ◽  
pp. 2202-2212 ◽  
Author(s):  
Daniel S. Codd ◽  
Andrew Carlson ◽  
Jennifer Rees ◽  
Alexander H. Slocum
Keyword(s):  
Low Cost ◽  

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Shunzhou Chu ◽  
Fengwu Bai ◽  
Fuliang Nie ◽  
Zhifeng Wang

Abstract A high-flux solar simulator is essential for evaluating solar thermal components under controlled and adjustable flux input conditions. This study presents a newly built high-flux solar simulator composed of 19 individual units. Each unit includes a xenon short-arc lamp (each consuming up to 6 kW electricity power) coupled with a truncated ellipsoidal reflector, a cooling blower, and a power module. The power module yields a current in the range of 50–160 A. The number of lamps in use is flexible, which allows for a wide range of radiation flux (10%–100%) on the focal plane. The radiation power, peak value, flux distribution on the circular target plane, and conversion efficiency are evaluated based on a flux mapping method. The results indicate that the proposed solar simulator is capable of achieving thermal power of 23.3 kW, peak flux in excess of 1.78 MW/m2, a stagnation temperature exceeding 2360 °C, and average irradiance of 773.4 kW/m2 on the focal plane (diameter of 260 mm). The electro-thermal conversion efficiency of the simulator is 35.7%. A ray-tracing method was employed, and the simulation results were found to be in good agreement with those in the experiments. An experimental test of a volumetric ceramic receiver was conducted, and the results indicate the availability and applicability of the high-flux solar simulator when carrying out studies about solar receivers.


Sign in / Sign up

Export Citation Format

Share Document