radiation power
Recently Published Documents


TOTAL DOCUMENTS

542
(FIVE YEARS 196)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Muhannad Kaml Abdulhameed ◽  
Sarah Rafil Hashim ◽  
Noor Kamil Abdalhameed ◽  
Ahmed Jamal Abdullah Al-Gburi

<p class="Default">The radiation power in the endfire is decreased while the main beam of half substrate integrated waveguide scan from broadside to endfire in a forward. The design of half-width microstrip leaky-wave antenna (HW-MLWA) has been presented in this work to increase the power radiation near endfire by using the slots technique in the radiation element. This slot leads to a decrease the cross-polarization. The proposed design comprises one element of HW-MLWA with repeated meandered square slots in the radiation element. One aspect of this antenna is generated by using a half substrate integrated waveguide with a full tapered feed line. The proposed antenna was terminated by load of 50 Ω, and feed on the other end of the antenna. Finally, the suggested design is simulated and acceptable results were found. The released gain is increased from 10.6 dBi to 12 dBi at 4.3 GHz. This design is suitable for unmanned aerial vehicle UAVs at C band application.</p>


2022 ◽  
Vol 24 (4) ◽  
pp. 63-71
Author(s):  
Sergey N. Razinkov ◽  
Olga E. Razinkova

Using spectral energy equations of transmission-reception of wave processes in radio channel with scattering on object and direct radio channel, analysis of energy ratios of information signals and active masking interference at inputs of receivers of remote monitoring systems is carried out. Measures to reduce visibility are aimed at changing the reflective signatures of objects in the interests of reducing the de-masking features contained in secondary electromagnetic radiation to limits that exclude the performance of radar monitoring tasks at established distances and time intervals. Active interference is designed to mask information signals in receiving channels of radar at power that does not allow detecting their designers by passive radar. In case of joint application of not iceability reducing devices and active jammers, radar range reducing coefficient is determined by product of coefficient characterizing possibility of autonomous masking of information signals and coefficient achievable due to reduction of secondary electromagnetic radiation power in the second degree. The laws of increase of aircraft stealth from radar observation with joint application of technologies of reduction of radar visibility and masking by intentional interference created from sides of protected objects and from assigned points have been investigated. In order to maintain the desired signal-to-noise ratio at the output of the receiver with a decrease in the duration of the probing signal, it is necessary to proportionally increase the density of the emitted energy. With given antenna sizes, the maximum signal transmission range is proportional to the root square of their cyclic carrier frequency; increase of this parameter leads to increase of partial coefficient of directional action and effective area of antenna. With a decrease in the cyclic frequency of the carrier of the probing signal, inorder to maintain the required directional properties of the antennas, it is necessary to increase their dimensions.


2022 ◽  
Vol 14 (1) ◽  
pp. 194
Author(s):  
Andrey Sirin ◽  
Maria Medvedeva

Peat fires differ from other wildfires in their duration, carbon losses, emissions of greenhouse gases and highly hazardous products of combustion and other environmental impacts. Moreover, it is difficult to identify peat fires using ground-based methods and to distinguish peat fires from forest fires and other wildfires by remote sensing. Using the example of catastrophic fires in July–August 2010 in the Moscow region (the center of European Russia), in the present study, we consider the results of peat-fire detection using Terra/Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) hotspots, peat maps, and analysis of land cover pre- and post-fire according to Landsat-5 TM data. A comparison of specific (for detecting fires) and non-specific vegetation indices showed the difference index ΔNDMI (pre- and post-fire normalized difference moisture Index) to be the most effective for detecting burns in peatlands according to Landsat-5 TM data. In combination with classification (both unsupervised and supervised), this index offered 95% accuracy (by ground verification) in identifying burnt areas in peatlands. At the same time, most peatland fires were not detected by Terra/Aqua MODIS data. A comparison of peatland and other wildfires showed the clearest differences between them in terms of duration and the maximum value of the fire radiation power index. The present results may help in identifying peat (underground) fires and their burnt areas, as well as accounting for carbon losses and greenhouse gas emissions.


2022 ◽  
Vol 20 (4) ◽  
pp. 56-62
Author(s):  
M. A. Ryabova ◽  
M. Yu. Ulupov ◽  
N. A. Shumilova ◽  
G. V. Portnov ◽  
E. K. Tikhomirova ◽  
...  

Aim of the study was to compare the cutting and coagulation properties of 1.56 and 1.94 μm fiber lasers with those of a 0.98 μm semiconductor laser.Materials and methods. A comparative study of the biological effects of 1.56 and 1.94 µm lasers and a 0.98 µm semiconductor laser used in a constant, continuous mode was carried out. The cutting properties of the lasers were evaluated on the chicken muscle tissue samples by the width and depth of the ablation zone formed via a linear laser incision at a speed of 2 mm/s, while the coagulation properties were assessed by the width of the lateral coagulation zone. The zones were measured using a surgical microscope and a calibration slide. For statistical analysis, power values of 3, 5, 7, 9, and 11 W were chosen for each laser wavelength.Results. Analysis of the findings confirmed that laser wavelength had a statistically significant effect on the linear dependence between incision parameters and laser power. It was found that the 1.56 μm fiber laser (water absorption) had a greater coagulation ability but a comparable cutting ability compared with the 0.98 μm laser (hemoglobin absorption). When used in the power mode of 7W or higher, the 1.94 µm laser provided superior cutting performance compared with the 0.98 µm semiconductor laser at the same exposure power. Elevating the power in any of the lasers primarily increased the width of the ablation zone, and to a lesser extent – the crater depth and the width of the lateral coagulation zone. Therefore, in comparison with the 0.98 μm semiconductor laser, higher radiation power in the 1.56 and 1.94 μm lasers mainly influences their cutting properties, expanding the width and depth of the ablation zone, and has a smaller effect on their coagulation ability.Conclusion. The findings of the study showed that the 1.56 and 1.94 μm fiber lasers have better coagulation properties in comparison with the 0.98 μm semiconductor laser. was statistically proven that all incision characteristics (width of the lateral coagulation zone, depth and width of the ablation zone) for the 1.56, 1.94, and 0.98 μm lasers depend on the power of laser radiation. The 1.94 µm laser is superior to the 0.98 µm laser in its cutting properties. 


Author(s):  
А.А. Гурулев ◽  
А.О. Орлов

For deeply supercooled bulk water, anomalies of thermodynamic values are known near the Widom line, the locus of increased fluctuations of entropy and density. In this work, we measured the reflected power of microwave radiation at a frequency of 18 GHz from a silicate sorbent sample moistened with a hydrogen peroxide solution. In the experiment, we observed variations in the recorded reflected radiation power in the range –46 – –47 °С, determined by structural changes in the liquid. Thus, it is shown that fluctuations of water parameters near the Widom line are manifested in changes not only in thermodynamic, but also in electrophysical quantities.


2021 ◽  
Vol 18 (4) ◽  
pp. 43-52
Author(s):  
V. I. Santoniy ◽  
Ya. I. Lepikh ◽  
L. M. Budianskaya ◽  
V. I. Yanko

The optimization of the methods for the formation of the spatial-energy distribution of the probing radiation power and the processing the receiving signal by the locating laser information-measuring systems (LIMS), taking into account the spatial-temporal structure, is carried out, and the analysis of the existing methods of their processing is carried out too. An assessment of the integral criteria for the LIMS functioning when operating in conditions of interference has been made. The calculation of the parameters of the LIMS main links was carried out, taking into account the correlation between the resolution of the optical system and the capabilities of object detection, recognition and classification. A method was developed for the formation of the probing radiation density distribution and the receiving signal processing, taking into account its space-time structure, which made it possible to determine the optimal duration of the laser probe pulse. The determined duration makes it possible to eliminate errors in measuring the parameters of an object's movement under the influence of a combination of destabilizing factors and a lack of signal processing time, which will ensure the accuracy of the target detection and recognition.


2021 ◽  
Vol 12 ◽  
pp. 1392-1403
Author(s):  
Mikhail M Krasnov ◽  
Natalia D Novikova ◽  
Roger Cattaneo ◽  
Alexey A Kalenyuk ◽  
Vladimir M Krasnov

Impedance matching and heat management are important factors influencing the performance of terahertz sources. In this work we analyze thermal and radiative properties of such devices based on mesa structures of a layered high-temperature superconductor Bi2Sr2CaCu2O8+δ. Two types of devices are considered containing either a conventional large single crystal or a whisker. We perform numerical simulations for various geometrical configurations and parameters and make a comparison with experimental data for the two types of devices. It is demonstrated that the structure and the geometry of both the superconductor and the electrodes play important roles. In crystal-based devices an overlap between the crystal and the electrode leads to appearance of a large parasitic capacitance, which shunts terahertz emission and prevents impedance matching with open space. The overlap is avoided in whisker-based devices. Furthermore, the whisker and the electrodes form a turnstile (crossed-dipole) antenna facilitating good impedance matching. This leads to more than an order of magnitude enhancement of the radiation power efficiency in whisker-based, compared to crystal-based, devices. These results are in good agreement with presented experimental data.


Laser Physics ◽  
2021 ◽  
Vol 32 (1) ◽  
pp. 015401
Author(s):  
Yunxiao Shi ◽  
Zhe Xu ◽  
Jingyu Wang ◽  
Zehao Huang ◽  
Hui Liu ◽  
...  

Abstract Within the frame of classical electrodynamics, nonlinear Thomson scattering by an electron of a tightly focused circularly polarized laser has been investigated. The electron motion and spatial radiation characteristics are studied numerically when the electron is initially stationary. The numerical analysis shows that the direction of the maximum radiation power is in linear with the initial phase of the laser pulse. Furthermore, we generalize the rule to the case of arbitrary beam waist, peak amplitude and pulse width. Then the radiation distribution is studied when the electron propagates in the opposite sense with respect to the laser pulse and the linear relationship still holds true. Last we pointed out the limitation of the single electron model in this paper.


2021 ◽  
Author(s):  
Boris A. Kozlov ◽  
Dmitry S. Makhanko ◽  
Alexander Y. Payurov

Sign in / Sign up

Export Citation Format

Share Document