High performance, self-powered and thermally stable 200–750 nm spectral responsive gallium nitride (GaN) based broadband photodetectors

2021 ◽  
Vol 225 ◽  
pp. 111033
Author(s):  
Nanda Kumar Reddy Nallabala ◽  
Srinivas Godavarthi ◽  
Venkata Krishnaiah Kummara ◽  
Mohan Kumar Kesarla ◽  
C. Yuvaraj ◽  
...  
2018 ◽  
Vol 452 ◽  
pp. 43-48 ◽  
Author(s):  
Mingxiang Zhang ◽  
Ying Liu ◽  
Mengqi Yang ◽  
Wen Zhang ◽  
Jinyuan Zhou ◽  
...  

2021 ◽  
Author(s):  
Lixiang Han ◽  
Mengmeng Yang ◽  
Peiting Wen ◽  
Wei Gao ◽  
nengjie huo ◽  
...  

One dimensional (1D)-two dimensional (2D) van der Waals (vdWs) mixed-dimensional heterostructures with advantages of atomically sharp interface, high quality and good compatibility have attracted tremendous attention in recent years. The...


Small ◽  
2021 ◽  
pp. 2100442
Author(s):  
Zhengxun Lai ◽  
You Meng ◽  
Qi Zhu ◽  
Fei Wang ◽  
Xiuming Bu ◽  
...  

2021 ◽  
Vol 7 (3) ◽  
pp. eabd6978 ◽  
Author(s):  
Jingxin Zhao ◽  
Hongyu Lu ◽  
Yan Zhang ◽  
Shixiong Yu ◽  
Oleksandr I. Malyi ◽  
...  

Coaxial fiber-shaped supercapacitors with short charge carrier diffusion paths are highly desirable as high-performance energy storage devices for wearable electronics. However, the traditional approaches based on the multistep fabrication processes for constructing the fiber-shaped energy device still encounter persistent restrictions in fabrication procedure, scalability, and mechanical durability. To overcome this critical challenge, an all-in-one coaxial fiber-shaped asymmetric supercapacitor (FASC) device is realized by a direct coherent multi-ink writing three-dimensional printing technology via designing the internal structure of the coaxial needles and regulating the rheological property and the feed rates of the multi-ink. Benefitting from the compact coaxial structure, the FASC device delivers a superior areal energy/power density at a high mass loading, and outstanding mechanical stability. As a conceptual exhibition for system integration, the FASC device is integrated with mechanical units and pressure sensor to realize high-performance self-powered mechanical devices and monitoring systems, respectively.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Ting Zhang ◽  
Shibin Li

AbstractIn this manuscript, the inorganic perovskite CsPbI2Br and CsPbIBr2 are investigated as photoactive materials that offer higher stability than the organometal trihalide perovskite materials. The fabrication methods allow anti-solvent processing the CsPbIxBr3−x films, overcoming the poor film quality that always occur in a single-step solution process. The introduced diethyl ether in spin-coating process is demonstrated to be successful, and the effects of the anti-solvent on film quality are studied. The devices fabricated using the methods achieve high-performance, self-powered and the stabilized photodetectors show fast response speed. The results illustrate a great potential of all-inorganic CsPbIxBr3−x perovskites in visible photodetection and provide an effective way to achieve high performance devices with self-powered capability.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chang Liu ◽  
Jincan Kang ◽  
Zheng-Qing Huang ◽  
Yong-Hong Song ◽  
Yong-Shan Xiao ◽  
...  

AbstractThe selective hydrogenation of CO2 to value-added chemicals is attractive but still challenged by the high-performance catalyst. In this work, we report that gallium nitride (GaN) catalyzes the direct hydrogenation of CO2 to dimethyl ether (DME) with a CO-free selectivity of about 80%. The activity of GaN for the hydrogenation of CO2 is much higher than that for the hydrogenation of CO although the product distribution is very similar. The steady-state and transient experimental results, spectroscopic studies, and density functional theory calculations rigorously reveal that DME is produced as the primary product via the methyl and formate intermediates, which are formed over different planes of GaN with similar activation energies. This essentially differs from the traditional DME synthesis via the methanol intermediate over a hybrid catalyst. The present work offers a different catalyst capable of the direct hydrogenation of CO2 to DME and thus enriches the chemistry for CO2 transformations.


2021 ◽  
Vol 9 (14) ◽  
pp. 4799-4807
Author(s):  
Yong Zhang ◽  
Weidong Song

P-CuZnS/n-GaN UV photodetector is prepared by a simple chemical bath deposition, showing excellent self-powered properties, including ultrahigh on/off ratio (3 × 108), fast response speed (0.14/40 ms) and large detectivity of 3 × 1013 Jones.


Sign in / Sign up

Export Citation Format

Share Document