Slip partitioning in the northeast Pamir–Tian Shan convergence zone

2010 ◽  
Vol 483 (3-4) ◽  
pp. 344-364 ◽  
Author(s):  
Bihong Fu ◽  
Yoshiki Ninomiya ◽  
Jianming Guo
2020 ◽  
Author(s):  
Yingying Jia ◽  
Christoph Glotzbach ◽  
Todd Ehlers ◽  
Lixing Lü

<p><span>The Pamir is an along-strike continuation of the Tibet-Himalaya orogen and penetrated ~300 km into the Tarim and Tajik basins in Cenozoic times. This northward indentation led to regional paleoenvironmental changes and facilitated northward transport of the far-field stress from the India-Asia plate boundary. Due to the compressional stress from the India-Asia boundary and Cenozoic lithosphere delamination, the Pamir underwent intense exhumations, which well recorded its Late Cenozoic mountain building processes. However, the very rapid Late Cenozoic exhumation also erased earlier cooling records and hinders a clear understanding of the Early Cenozoic tectonic evolution of Pamir. Thus, the onset and magnitude of the northward movement of Pamir are loosely constrained (Eocene-Late Oligocene) and long debated. In particular, the Early Cenozoic tectonic evolution of Pamir is unclear.</span></p><p><span>Provenance study of sediments in the adjacent sediment basins is a widely used method to reconstruct the tectonic-geomorphologic evolution of a mountain range. We carried out paleocurrent measurements and detrital zircon analysis of the Cretaceous-Pliocene sediments in the northern Pamir-Tian Shan convergence zone. Our study area, the Tierekesazi section, is located immediately south to the southern Tian Shan and is evolved in the present foreland basin of the southwestern Tian Shan. The provenance data show that the Tian Shan was the primary source area of the northwestern Tarim basin in the Cretaceous. The appearance of the Triassic-Jurassic detrital zircon grains and northward paleo-flow directions in the Eocene (~41 Ma) to Middle Miocene sediments suggest the Pamir became an important source area of the northwestern Tarim basin. Combining with the regional crustal shortening and paleoclimate data, we speculate that the northward indentation of the Pamir initiated before ~41 Ma. In contrast with the northward movement and Middle-Late Miocene accelerated exhumation of the Pamir, the source area of the studied section shifted back to the Tian Shan after the Middle Miocene. It consists with the Middle-Late Miocene uplift of the southwestern Tian Shan. Simultaneously, the crustal shortening of Pamir propagated to its northern foreland. Newly formed fold-and-thrust zones probably blocked the sediment transport from Pamir to the Tierekesazi section, and the present-day east flowing drainage system in the Pamir-Tian Shan convergence zone was established. We infer, in this period, the Pamir likely reached its present position, which is consistent with the appearance of an extreme arid climate in the Tarim basin.</span></p>


Tectonics ◽  
2017 ◽  
Vol 36 (12) ◽  
pp. 2748-2776 ◽  
Author(s):  
Jessica Ann Thompson Jobe ◽  
Tao Li ◽  
Jie Chen ◽  
Douglas W. Burbank ◽  
Aaron Bufe

Lithosphere ◽  
2018 ◽  
Vol 10 (6) ◽  
pp. 806-828 ◽  
Author(s):  
Jessica Ann Thompson Jobe ◽  
Tao Li ◽  
Bodo Bookhagen ◽  
Jie Chen ◽  
Douglas Burbank

2021 ◽  
Author(s):  
Chuanyong Wu ◽  
et al.

Figure S1: Profile of velocity components normal to structure striking (E-W components) across the eastern Tian Shan (profile from (85.3°, 41.0°) to (85.3°, 45.0°) with a width of 240 km.


Author(s):  
Chuanyong Wu ◽  
Guangxue Ren ◽  
Siyu Wang ◽  
Xue Yang ◽  
Gan Chen ◽  
...  

The deformation pattern and slip partitioning related to oblique underthrusting of the Tarim Basin in the eastern Tian Shan orogenic belt are not well understood because interior deformation images are lacking. The Baoertu fault is an E-W−striking, ∼350-km-long reactivated basement structure within the eastern Tian Shan. In this study, we quantify its late Quaternary activity based on interpretations of detailed high-resolution remote sensing images and field investigations. Three field observation sites along an ∼80-km-long fault segment indicate that the Baoertu fault is characterized by sinistral thrust faulting. Based on surveying of the displaced geomorphic surfaces with an unmanned drone and dating of the late Quaternary sediments using radiocarbon and optically stimulated luminescence (OSL) methods, we estimate a late Quaternary left-lateral, strike-slip rate of 1.87 ± 0.29 mm/yr and a N−S shortening rate of 0.26 ± 0.04 mm/yr for this fault. The lithospheric Baoertu fault acts as a decoupling zone and accommodates the left-lateral shearing caused by the oblique underthrusting of the Tarim Basin. In the eastern Tian Shan orogenic belt, the oblique convergence is partitioned into thrust faulting across the entire range and sinistral slip faulting on the high-dip basement structure within the orogen. This active faulting pattern in the eastern Tian Shan of sinistral shearing in the center and thrust faulting on both sides can be viewed as giant, crustal-scale positive flower structures.


2021 ◽  
Author(s):  
Chuanyong Wu ◽  
et al.

Figure S1: Profile of velocity components normal to structure striking (E-W components) across the eastern Tian Shan (profile from (85.3°, 41.0°) to (85.3°, 45.0°) with a width of 240 km.


Sign in / Sign up

Export Citation Format

Share Document