Energy barriers to rotation in axially chiral quinazoline-4-ones

Tetrahedron ◽  
2021 ◽  
pp. 132506
Author(s):  
Ari Hakgor ◽  
Sule Erol Gunal
2001 ◽  
Vol 66 (22) ◽  
pp. 7394-7401 ◽  
Author(s):  
Alan C. Spivey ◽  
Patrick Charbonneau ◽  
Tomasz Fekner ◽  
Detlev H. Hochmuth ◽  
Adrian Maddaford ◽  
...  

Author(s):  
Primali Navaratne ◽  
Jenny Wilkerson ◽  
Kavindri Ranasinghe ◽  
Evgeniya Semenova ◽  
Lance McMahon ◽  
...  

<div> <div> <div> <p>Phytocannabinoids, molecules isolated from cannabis, are gaining attention as promising leads in modern medicine, including pain management. Considering the urgent need for combating the opioid crisis, new directions for the design of cannabinoid-inspired analgesics are of immediate interest. In this regard, we have hypothesized that axially-chiral-cannabinols (ax-CBNs), unnatural (and unknown) isomers of cannabinol (CBN) may be valuable scaffolds for cannabinoid-inspired drug discovery. There are multiple reasons for thinking this: (a) ax-CBNs would have ground-state three-dimensionality akin to THC, a key bioactive component of cannabis, (b) ax-CBNs at their core structure are biaryl molecules, generally attractive platforms for pharmaceutical development due to their ease of functionalization and stability, and (c) atropisomerism with respect to phytocannabinoids is unexplored “chemical space.” Herein we report a scalable total synthesis of ax-CBNs, examine physical properties experimentally and computationally, and provide preliminary behavioral and analgesic analysis of the novel scaffolds. </p> </div> </div> </div>


2020 ◽  
Author(s):  
Ziqing Zuo ◽  
Raphael Kim ◽  
Donald Watson

<div><p>We report an asymmetric Ullmann-type homocoupling of <i>ortho-</i>(iodo)arylphosphine oxides and <i>ortho</i>-(iodo)arylphosphonates that results in highly enantioenriched axially chiral bisphosphine oxides and bisphosphonates in good yields and excellent enantioselectivities. These products are readily converted to enantioenriched biaryl bisphosphines without need for chiral auxiliaries or optical resolution. This process provides a straightforward and practical route for the development of previously uninvestigated atroposelective biaryl bisphosphine ligands.</p></div>


10.2741/3104 ◽  
2008 ◽  
Vol Volume (13) ◽  
pp. 5614 ◽  
Author(s):  
Mookyung Cheon
Keyword(s):  

1998 ◽  
Vol 63 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Miloš Tichý ◽  
Luděk Ridvan ◽  
Miloš Buděšínský ◽  
Jiří Závada ◽  
Jaroslav Podlaha ◽  
...  

The axially chiral bis(α-amino acid)s cis-2 and trans-2 as possible building blocks for polymeric structures of novel type of helicity were prepared. Their configuration has been determined by NMR spectroscopy and, in the case of the trans-isomer, confirmed by single-crystal X-ray diffraction. Analogous pair of stereoisomeric diacids cis-3 and trans-3, devoid of the amino groups, was also prepared and their configuration assigned. The observed differences in the NMR spectra of cis- and trans-isomers of 2 and 3 are discussed from the viewpoint of their different symmetry properties.


2019 ◽  
Vol 21 (2) ◽  
pp. 503-507 ◽  
Author(s):  
Pei Zhang ◽  
Qiuhong Huang ◽  
Yuyu Cheng ◽  
Rongshi Li ◽  
Pengfei Li ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1165
Author(s):  
Yasuhiro Sato ◽  
Yuichi Kawata ◽  
Shungo Yasui ◽  
Yoshihito Kayaki ◽  
Takao Ikariya

As a candidate for bifunctional asymmetric catalysts containing a half-sandwich C–N chelating Ir(III) framework (azairidacycle), a dinuclear Ir complex with an axially chiral linkage is newly designed. An expedient synthesis of chiral 2,2′-bis(aminomethyl)-1,1′-binaphthyl (1) from 1,1-bi-2-naphthol (BINOL) was accomplished by a three-step process involving nickel-catalyzed cyanation and subsequent reduction with Raney-Ni and KBH4. The reaction of (S)-1 with an equimolar amount of [IrCl2Cp*]2 (Cp* = η5–C5(CH3)5) in the presence of sodium acetate in acetonitrile at 80 °C gave a diastereomeric mixture of new dinuclear dichloridodiiridium complexes (5) through the double C–H bond cleavage, as confirmed by 1H NMR spectroscopy. A loss of the central chirality on the Ir centers of 5 was demonstrated by treatment with KOC(CH3)3 to generate the corresponding 16e amidoiridium complex 6. The following hydrogen transfer from 2-propanol to 6 provided diastereomers of hydrido(amine)iridium retaining the bis(azairidacycle) architecture. The dinuclear chlorido(amine)iridium 5 can serve as a catalyst precursor for the asymmetric transfer hydrogenation of acetophenone with a substrate to a catalyst ratio of 200 in the presence of KOC(CH3)3 in 2-propanol, leading to (S)-1-phenylethanol with up to an enantiomeric excess (ee) of 67%.


2021 ◽  
Vol 9 (10) ◽  
pp. 6567-6574
Author(s):  
B. Sherwood ◽  
C. J. Ridley ◽  
C. L. Bull ◽  
S. Fop ◽  
J. M. S. Skakle ◽  
...  

The pressure response of Ba3MoNbO8.5 reveals a structural transformation, which acts to increase the energy barriers to migration along all available transport pathways, and an exceptionally low bulk modulus.


Sign in / Sign up

Export Citation Format

Share Document