Potency of isothiocyanates to induce luciferase reporter gene expression via the electrophile-responsive element from murine glutathione S-transferase Ya

2009 ◽  
Vol 23 (4) ◽  
pp. 617-621 ◽  
Author(s):  
Martijn Vermeulen ◽  
Anne-Marie M.J.F. Boerboom ◽  
Barry M.G. Blankvoort ◽  
Jac M.M.J.G. Aarts ◽  
Ivonne M.C.M. Rietjens ◽  
...  
1998 ◽  
Vol 18 (1) ◽  
pp. 525-535 ◽  
Author(s):  
Ching-Yi Chang ◽  
Alvaro Puga

ABSTRACT The ligand-activated aromatic hydrocarbon receptor (AHR) dimerizes with the AHR nuclear translocator (ARNT) to form a functional complex that transactivates expression of the cytochrome P-450CYP1A1 gene and other genes in the dioxin-inducible [Ah] gene battery. Previous work from this laboratory has shown that the activity of the CYP1A1 enzyme negatively regulates this process. To study the relationship between CYP1A1 activity and Ah receptor activation we used CYP1A1-deficient mouse hepatomac37 cells and CYP1A1- and AHR-deficient African green monkey kidney CV-1 cells. Using gel mobility shift and luciferase reporter gene expression assays, we found that c37 cells that had not been exposed to exogenous Ah receptor ligands already contained transcriptionally active AHR-ARNT complexes, a finding that we also observed in wild-type Hepa-1 cells treated with Ellipticine, a CYP1A1 inhibitor. In CV-1 cells, transient expression of AHR and ARNT leads to high levels of AHR–ARNT-dependent luciferase gene expression even in the absence of an agonist. Using a green fluorescent protein-tagged AHR, we showed that elevated reporter gene expression correlates with constitutive nuclear localization of the AHR. Transcriptional activation of the luciferase reporter gene observed in CV-1 cells is significantly decreased by (i) expression of a functional CYP1A1 enzyme, (ii) competition with chimeric or truncated AHR proteins containing the AHR ligand-binding domain, and (iii) treatment with the AHR antagonist α-naphthoflavone. These results suggest that a CYP1A1 substrate, which accumulates in cells lacking CYP1A1 enzymatic activity, is an AHR ligand responsible for endogenous activation of the Ah receptor.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Anagha Sen ◽  
Shumei Ren ◽  
Jianxin Sun ◽  
Patrick Most ◽  
Karsten Peppel

Rationale: The EF-hand Ca2+ sensor S100A1 is essential for proper endothelial nitric oxide (NO) synthase (eNOS) activation. S100A1 levels are greatly reduced in endothelial cells (ECs) subjected to hypoxia, rendering them dysfunctional. Objective: To determine if the 3’UTR mediates the rapid hypoxia-induced downregulation of S100A1 in ECs. Methods and Results: ECs transfected with a S100A1 - 3’ untranslated region (UTR) luciferase reporter construct displayed significantly reduced gene expression when subjected to gas or chemical hypoxia. Bioinformatic analysis suggested that microRNA -138 (miR-138) could target the 3’UTR of S100A1. Hypoxia greatly increased miR-138 levels in ECs, but not in skeletal muscle C2C12 myotubes. Consistent with this finding, patients with critical limb ischemia (CLI) or mice subjected to femoral artery resection (FAR) displayed increased miR-138 levels. Transfection of a miR-138 mimic into ECs reduced S100A1 - 3 ‘UTR reporter gene expression, while transfection of an anti miR-138 (antagomir) prevented the hypoxia-induced downregulation of the reporter gene. The increased levels of miR-138 are dependent on Hif1-α activation as treatment with siRNA against Hif1-α prevented S100A1 reporter gene downregulation after hypoxia. Conversely, specific activation of Hif1-α by a selective prolyl-hydroxylase inhibitor (IOX2) reduced reporter gene expression. Finally, ECs transfected with miR-138 mimic displayed reduced tube formation when plated onto Matrigel matrix and expressed less NO when stimulated with VEGF. These effects were reversed by gene transfer of S100A1 using recombinant adenovirus. Conclusions: Our study shows that miR-138 is an essential mediator of EC dysfunction via its ability to target the 3’UTR of S100A1 in a hypoxia-induced manner. MiR-138 might thus be an attractive target for the treatment of pathologies that are linked to endothelial dysfunction.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1216 ◽  
Author(s):  
Juliette M. Delhove ◽  
Rajvinder Karda ◽  
Lorna M. FitzPatrick ◽  
Suzanne M.K. Buckley ◽  
Simon N. Waddington ◽  
...  

Bioluminescence imaging enables noninvasive quantification of luciferase reporter gene expression in transgenic tissues of living rodents. Luciferase transgene expression can be regulated by endogenous gene promoters after targeted knock-in of the reporter gene, usually within the first intron of the gene. Even using CRISPR/Cas9 mediated genome editing this can be a time consuming and costly process. The generation of germline transgenic (GLT) rodents by targeted genomic integration of a gene expression cassette in embryonic stem (ES) cells is commonplace but results in the wastage of large numbers of animals during colony generation, back-crossing and maintenance. Using a synthetic/truncated promoter-driven luciferase gene to study promoter activity in a given tissue or organ of a GLT also often results in unwanted background luciferase activity during whole-body bioluminescent imaging as every cell contains the reporter. We have developed somatotransgenic bioimaging; a method to generate tissue-restricted transcription factor activated luciferase reporter (TFAR) cassettes in rodents that substantially reduces the number of animals required for experimentation. Bespoke designed TFARs are delivered to newborn pups using viral vectors targeted to specific organs by tissue-tropic pseudotypes. Retention and proliferation of TFARs is facilitated by stem/progenitor cell transduction and immune tolerance to luciferase due to the naïve neonatal immune system. We have successfully applied both lentiviral and adeno-associated virus (AAV) vectors in longitudinal rodent studies, targeting TFARs to the liver and brain during normal development and in well-established disease models. Development of somatotransgenic animals has broad applicability to non-invasively determine mechanistic insights into homeostatic and disease states and assess toxicology and efficacy testing. Somatotransgenic bioimaging technology is superior to current whole-body, light-emitting transgenic models as it reduces the numbers of animals used by generating only the required number of animals. It is also a refinement over current technologies given the ability to use conscious, unrestrained animals.


1999 ◽  
Vol 276 (4) ◽  
pp. C883-C891 ◽  
Author(s):  
Carola E. Wright ◽  
F. Haddad ◽  
A. X. Qin ◽  
P. W. Bodell ◽  
K. M. Baldwin

Cardiac β-myosin heavy chain (β-MHC) gene expression is mainly regulated through transcriptional processes. Although these results are based primarily on in vitro cell culture models, relatively little information is available concerning the interaction of key regulatory factors thought to modulate MHC expression in the intact rodent heart. Using a direct gene transfer approach, we studied the in vivo transcriptional activity of different-length β-MHC promoter fragments in normal control and in altered thyroid states. The test β-MHC promoter was fused to a firefly luciferase reporter gene, whereas the control α-MHC promoter was fused to the Renilla luciferase reporter gene and was used to account for variations in transfection efficiency. Absolute reporter gene activities showed that β- and α-MHC genes were individually and reciprocally regulated by thyroid hormone. The β-to-α ratios of reporter gene expression demonstrated an almost threefold larger β-MHC gene expression in the longest than in the shorter promoter fragments in normal control animals, implying the existence of an upstream enhancer. A mutation in the putative thyroid response element of the −408-bp β-MHC promoter construct caused transcriptional activity to drop to null. When studied in the −3,500-bp β-MHC promoter, construct activity was reduced (∼100-fold) while thyroid hormone responsiveness was retained. These findings suggest that, even though the bulk of the thyroid hormone responsiveness of the gene is contained within the first 215 bp of the β-MHC promoter sequence, the exact mechanism of triiodothyronine (T3) action remains to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document