luciferase reporter gene
Recently Published Documents


TOTAL DOCUMENTS

828
(FIVE YEARS 419)

H-INDEX

56
(FIVE YEARS 8)

2022 ◽  
Vol 12 (4) ◽  
pp. 681-689
Author(s):  
Zhou Hongyi ◽  
Yan Zhiqiang ◽  
Zhu Leilei ◽  
Li Maolin ◽  
Shao Jianfeng ◽  
...  

Objection: Our research wanted to discuss miR-29b-3p in PCa occurrence and development and relative mechanisms. Methods: Collecting adjacent and cancer tissues from prostate cancer patients and measuring miR-29b-3p expressions by RT-qPCR and ISH assay. Using DU145 and PC3 cell lines which the miR-29b-3p were high expression in our study. Using miR inhibitor to knockdown miR-29b-3p in DU145 and PC3. Using CCK-8 and flow cytometry to measure cell proliferation and cell apoptosis, invasion cell number by transwell and wound healing rate by wound healing assay. The relative proteins expressions were measured using WB assay. p-AKT nuclear levels were evaluated using Cell immunofluorescence test. Using dual-luciferase reporter gene assay to analysis correlation miR-29b-3p and PTEN. Results: miR-29b-3p gene significantly increased. miR-29b-3p knockdown had effects to depress cell proliferation, increase cell apoptosis, depress invasion cells number and wound healing rates. PTEN proteins were significantly up-regulation and p-AKT and MMP-9 proteins expressions were significantly down-regulation (P < 0.001, respectively). And p-AKT nuclear volume were significantly depressed. And miR-29b-3p could target PTEN. Conclusion: miR-29b-3p played an oncology gene in prostate cancer via regulation PTEN/AKT pathway in vitro study.


2022 ◽  
Vol 12 (2) ◽  
pp. 417-421
Author(s):  
Zhanxiang Yang ◽  
Lihong Zhang

This study intends to elucidate MiRNA-335’s role in hepatoma cell lines (HCC). Real-time PCR was used to detect MiRNA-335 expression in HCC, flow cytometry and MTT were used to detect apoptosis and proliferation. Luciferase reporting system analyzed the targeting relationship between Foxo3a and MiRNA-335. HCC (SMMC7721 cell) exhibited significantly reduced MiRNA-335 compared to normal hepatocyte cell (HL7702). MiRNA-335 mimic inhibited HCC proliferation and enhanced apoptosis, which were reversed by MiRNA-335 inhibitor. Luciferase reporter gene system showed that MiRNA-335 significantly inhibited the fluorescent activity of Foxo3a 3′-UTR, indicating that MiRNA-335 could target Foxo3a RNA. In conclusion, the decrease of MiRNA-335 can promote the proliferation of hepatoma cells and inhibit apoptosis possibly through regulating Foxo3a, which provides a new direction for the treatment of liver cancer.


2022 ◽  
Vol 12 (2) ◽  
pp. 373-380
Author(s):  
Xuecheng Sun ◽  
Tao Wang ◽  
Bo Huang ◽  
Gaobo Ruan ◽  
Jun Huang ◽  
...  

Background: Vitiligo, a chronic, autoimmune destruction of melanocytes, caused by the disappearance of epidermal melanocytes, but the mechanism is not fully understood. Although emerging evidence demonstrated that abnormal regulation of microRNAs (miRNAs) were associated with the pathogenesis of diseases, the functions of miR-637 in vitiligo remain unclear. Objective: This research was designed to explore the potential roles of miR-637 in hydrogen peroxide (H2O2)-induced human primary melanocytes in vitiligo. Methods: Human primary melanocytes were induced by 250 μmol/L H2O2 for 4 h to establish oxidative injury of melanocytes model. Cell viability and apoptosis analyzed by MTT and flow cytometry assay, respectively. The relevance between miR-637 and transient receptor potential melastatin 2 (TRPM2) was checked using TargetScan and dual luciferase reporter gene assay. The expression of miR-637 and TRPM2 was evaluated using qRT-PCR and/or Western blot analysis. Reactive oxygen species (ROS) accumulation, superoxide dismutase (SOD) and catalase (CAT) activities were measured using specific assay kits. In addition, the expression of Bcl-2 and Bax were evaluated using Western blot assay. Results: TRPM2 was up-regulated, while miR-637 was down-regulated in H2O2-stimulated human primary melanocytes. TRPM2 directly interacted with miR-637. Up-regulation of miR-637 memorably increased miR-637 level and inhibited TRPM2 expression. Furthermore, miR-637 mimic fortified cell viability, reduced apoptotic cells, enhanced Bcl-2 expression, reduced Bax level, as well as inhibited the ratio of Bax/Bcl-2 in H2O2-induced melanocytes. Meanwhile, miR-637 mimic obviously suppressed the accumulation of ROS and increased SOD and CAT activity. Nevertheless, all these findings were inverted by TRPM2-plasmid. Likewise, TRPM2-siRNA led to increased cell viability, reduced apoptotic cells, enhanced Bcl-2 expression, reduced Bax level, inhibited Bax/Bcl-2 ratio, inhibited ROS production, but increased SOD and CAT activity in H2O2-induced melanocytes. Conclusion: Our findings suggested that TRPM2 was up-regulated, while miR-637 was down-regulated in injurious melanocytes of vitiligo. Up-regulation of miR-637 relieved oxidative stress-stimulated melanocyte injury via down-regulating TRPM2 expression. Our results provide new insights into the functions of miR-637 in the development of vitiligo, indicating that miR-637 may be a latent target for vitiligo therapy.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Zijian Ma ◽  
Ganyi Chen ◽  
Yiqian Chen ◽  
Zizhang Guo ◽  
Hao Chai ◽  
...  

Abstract Background Non-small cell lung cancer (NSCLC) is still one of the diseases with the highest mortality and morbidity, and lung adenocarcinoma (LUAD) accounts for more than half of all NSCLC cases in most countries. miRNA can be used as a potential biological marker and treatment for lung adenocarcinoma. However, the effect of miR-937-3p to the invasion and metastasis of LUAD cells is not clear. Methods miRNA microarray is used to analyze the expression of miRNA in lung adenocarcinoma tissue. Transwell migration, Wound-healing assay and Western blot analysis are used to analyze cell migration, invasion and epithelial-mesenchymal transition (EMT) capabilities. Tube formation is used to assess angiogenesis ability. In addition, dual luciferase reporter gene detection is used to identify the potential binding between miRNA and target mRNA. In vivo experiments were performed on male NOD/SCID nude mice by tail vein injection to establish a transplanted tumor model. The CHIP experiment is used to verify the transcription factors of miRNA. Result In our study, miR-937-3p was high-regulated in LUAD cell lines and tissues, and its expression level was related to tumor progression. We found that miR-937-3p high-expression has an effect on cell invasion and metastasis. In molecular mechanism, miR-937-3p causes SOX11 reduction by directly binding to the 3′-UTR of SOX11.In addition, MYC affects miR-937-3p transcription by binding to its promoter region. Conclusions Our research shows that miR-937-3p is mediated by MYC and can control the angiogenesis, invasion and metastasis of LUAD by regulating SOX11, thereby promoting the progress of LUAD. We speculate that miR-937-3p can be used as a therapeutic target and potential biomarker for LUAD.


Author(s):  
Xiao-xu Yang ◽  
Zhen-yu Zhao

Cardiac fibrosis is one of the major pathological characteristics of diabetic cardiomyopathy (DCM). MicroRNAs (miRNAs, miRs) have been identified as key regulators in the progression of cardiac fibrosis. This study aimed to investigate the role of miR-30a-5p in DCM and the underlying mechanism. The rat model of diabetes mellitus (DM) was established by streptozotocin injection, and the rat primary cardiac fibroblasts (CFs) were isolated from cardiac tissue and then treated with high glucose (HG). MTT assay was performed to assess the viability of CFs. Dual-luciferase reporter gene assay was conducted to verify the interaction between miR-30a-5p and Smad2. The expression of miR-30a-5p was downregulated in the myocardial tissues of DM rats and HG-stimulated CFs. Overexpression of miR-30a-5p reduced Smad2 levels and inhibited collagen formation in HG-stimulated CFs and DM rats, as well as decreased the proliferation of CFs induced by HG. Smad2 was a target of miR-30a-5p and its expression was inhibited by miR-30a-5p. Furthermore, the simultaneous overexpression of Smad2 and miR-30a-5p reversed the effect of miR-30a-5p overexpression alone in CFs. Our results indicated that miR-30a-5p reduced Smad2 expression and also induced a decrease in proliferation and collagen formation in DCM.


2022 ◽  
Vol 11 ◽  
Author(s):  
Siming Xu ◽  
Yuhan Song ◽  
Yanxiong Shao ◽  
Haiwen Zhou

ObjectiveTo investigate the clinical significance of differentially expressed circRNAs and candidate circRNAs in the transformation of oral leukoplakia (OLK) to oral squamous cell carcinoma (OSCC).MethodsWe performed high-throughput circRNA sequencing in six cases of normal oral mucosal (NOM) tissues, six cases of OLK tissues, and six cases of OSCC tissues. Ten circRNAs with significant differential expression were verified by qRT-PCR. Enzyme tolerance assay and Sanger sequencing were performed on the screened target circRNA hsa_circ_0060927, and a qRT-PCR assay of hsa_circ_0060927 was performed in three tissues (24 cases in each group); this was followed by an ROC analysis. The ceRNA network was predicted using TargetScan and miRanda. MiR-195-5p and TRIM14 were selected as the downstream research objects of hsa_circ_0060927. The sponge mechanism of hsa_circ_0060927 was detected by AGO2 RIP. The interaction between hsa_circ_0060927 and miR-195-5p was verified by RNA pull-down assay and dual luciferase reporter gene assay. The expressions of hsa_circ_0060927, miR-195-5p, and TRIM14 were verified by normal oral epithelial primary cells and cell lines of LEUK1, SCC9, and SCC25. The hsa_circ_0060927 overexpressed plasmid and miR-195-5p mimics were constructed to transfection LEUK1 to detect the changes in cell proliferation, apoptosis, and migration.ResultsThe results of qRT-PCR validation were consistent with the sequencing results. Hsa_circ_0060927 is a true circRNA with trans-splicing sites. The expression of hsa_circ_0060927 increased in NOM, OLK, and OSCC. Overexpression of hsa_circ_0060927 enhanced the ability of cell proliferation and migration, and decreased cell apoptosis capacity. The prediction of ceRNA network suggested that hsa_circ_0060927 could regulate the target gene TRIM14 through sponging miR-195-5p. AGO2 RIP indicated that hsa_circ_0060927 had a sponge mechanism. RNA pull-down and dual luciferase reporter gene assay suggested that hsa_circ_0060927 interacted with miR-195-5p. Hsa_circ_0060927 was positively correlated with the expression of TRIM14, and could relieve the inhibition of miR-195-5p on TRIM14 to regulate cell proliferation, apoptosis, and migration of LEUK1 cells.ConclusionHsa_circ_0060927 acted as a potential key ceRNA to sponge downstream miR-195-5p and promote OLK carcinogenesis by upregulating TRIM14. Hsa_circ_0060927 was expected to be a molecular marker for the prevention and treatment of OLK carcinogenesis through the hsa_circ_0060927/miR-195-5p/TRIM14 axis.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Xiaoli Li ◽  
Duanfang Zhou ◽  
Yongqing Cai ◽  
Xiaoping Yu ◽  
Xiangru Zheng ◽  
...  

AbstractAndrogen receptor (AR) is an important prognostic marker and therapeutic target in luminal androgen receptor triple-negative breast cancer (LAR TNBC) and prostate cancer (PCa). Endoplasmic reticulum (ER) stress may activate the unfolded protein response (UPR) to regulate associated protein expression and is closely related to tumor growth and drug resistance. The effect of ER stress on AR expression and signaling remains unclear. Here, we focused on the regulation and underlying mechanism of AR expression induced by ER stress in LAR TNBC and PCa. Western blotting and quantitative RT-PCR results showed that AR expression was markedly decreased under ER stress induced by thapsigargin and brefeldin A, and this effect was dependent on PERK/eIF2α/ATF4 signaling activation. Chromatin immunoprecipitation-PCR and luciferase reporter gene analysis results showed that ATF4 bound to the AR promoter regions to inhibit its activity. Moreover, ATF4 overexpression inhibited tumor proliferation and AR expression both in vitro and in vivo. Collectively, these results demonstrated that ER stress could decrease AR mRNA and protein levels via PERK/eIF2α/ATF4 signaling in LAR TNBC and PCa. Targeting the UPR may be a treatment strategy for AR-dependent TNBC and PCa.


Author(s):  
Xuling Tan ◽  
Junjian Hu ◽  
Fengyu Ming ◽  
Lingling Lv ◽  
Weiqian Yan ◽  
...  

Precise recognition of early Parkinson’s disease (PD) has always been a challenging task requiring more feasible biomarkers to be integrated to improve diagnostic accuracy. MicroRNAs (miRNAs) of cerebrospinal fluid (CSF) are believed to be potential and promising candidate biomarkers for PD. However, the role of altered miRNAs of CSF play in PD is unclear. Here, we recruited patients with early stages of PD and controls to analyze the expression of miRNA in CSF by the Next Generation Sequencing (NGS). Furthermore, we tested the levels of these miRNA in SH-SY5Y cells treated with MPP+ using real-time quantitative PCR. We found 21 miRNAs were upregulated in CSF of early PD patients and miR-409-3p, one of the identified 21 miRNAs, was further confirmed in SH-SY5Y cells treated with MPP+. Also, more cells survived in the overexpression of the miR-409-3p group when SH-SY5Y cells and mice were treated with MPP+ and MPTP, respectively. Mechanistically, we demonstrated the binding of miR-409-3p and 3’UTR of ATXN3 through a dual luciferase reporter gene assay. Moreover, miR-409-3p mimic reduced the aggregation of polyglutamine-expanded mutant of ATXN3 and apoptosis. Our results provide experimental evidence for miR-409-3p in CSF as a diagnostic marker of PD.


2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Jingzhang Fan ◽  
Shiming Li ◽  
Dawei Wang

AbstractOsteogenic differentiation is a vital process for growth, repair, and remodeling of bones. Accumulating evidence have suggested that microRNAs (miRNAs or miRs) play a crucial role in osteogenic differentiation of mesenchymal stem cells (MSCs). Hence, the current study set out to elucidate the role of miR-149 in osteogenic differentiation of MSCs and the underlying mechanism. First, rat models of bone differentiation were established using the Masquelet-induced membrane technique, and MSCs were isolated. The expression of miR-149 and AKT1 in the rats and cells was detected with RT-qPCR and western blot analysis. The relationships among miR-149, AKT1, and Twist1 were further predicted by online bioinformatics prediction and verified using dual luciferase reporter gene assay. Alteration of miR-149, AKT1, or Twist1 was performed to further explore their effect on osteogenic differentiation of MSCs. miR-149 was poorly expressed in the process of osteogenic differentiation of MSCs, while AKT1 was highly expressed. miR-149 negatively regulated the expression of AKT1, which in turn diminished the protein levels of Twist1 and promoted the phosphorylation levels of Twist1. Lastly, miR-149 acted as an inhibitor of osteogenic differentiation of MSCs, which could be reversed by AKT1. To sum up, miR-149 silencing promoted osteogenic differentiation of MSCs by enhancing Twist1 degradation through AKT1 upregulation, representing a new method for bone repair treatment.


Author(s):  
Mengxuan Zhu ◽  
Pengfei Zhang ◽  
Shan Yu ◽  
Cheng Tang ◽  
Yan Wang ◽  
...  

Abstract Background Chemoresistance is a main obstacle in gastric cancer (GC) treatment, but its molecular mechanism still needs to be elucidated. Here, we aim to reveal the underlying mechanisms of nanoparticle albumin-bound paclitaxel (nab-paclitaxel) resistance in GC. Methods We performed RNA sequencing (RNA-seq) on samples from patients who were resistant or sensitive to nab-paclitaxel, and identified Zinc Finger Protein 64 (ZFP64) as critical for nab-paclitaxel resistance in GC. CCK8, flow cytometry, TUNEL staining, sphere formation assays were performed to investigate the effects of ZFP64 in vitro, while subcutaneous tumor formation models were established in nude mice or humanized mice to evaluate the biological roles of ZFP64 in vivo. Chromatin immunoprecipitation sequencing (CHIP-seq) and double-luciferase reporter gene assay were conducted to reveal the underlying mechanism of ZFP64. Results ZFP64 overexpression was linked with aggressive phenotypes, nab-paclitaxel resistance and served as an independent prognostic factor in GC. As a transcription factor, ZFP64 directly binds to Galectin-1 (GAL-1) promoter and promoted GAL-1 transcription, thus inducing stem-cell like phenotypes and immunosuppressive microenvironment in GC. Importantly, compared to treatment with nab-paclitaxel alone, nab-paclitaxel plus GAL-1 blockade significantly enhanced the anti-tumor effect in mouse models, particularly in humanized mice. Conclusions Our data support a pivotal role for ZFP64 in GC progression by simultaneously promoting cellular chemotherapy resistance and tumor immunosuppression. Treatment with the combination of nab-paclitaxel and a GAL-1 inhibitor might benefit a subgroup of GC patients.


Sign in / Sign up

Export Citation Format

Share Document