scholarly journals Metric spaces on which continuous functions are “almost” uniformly continuous

2017 ◽  
Vol 232 ◽  
pp. 256-266 ◽  
Author(s):  
Kyriakos Keremedis
Filomat ◽  
2013 ◽  
Vol 27 (5) ◽  
pp. 925-930 ◽  
Author(s):  
Hüseyin Çakallı ◽  
Ayșe Sӧnmez

In this paper, we investigate slowly oscillating continuity in cone metric spaces. It turns out that the set of slowly oscillating continuous functions is equal to the set of uniformly continuous functions on a slowly oscillating compact subset of a topological vector space valued cone metric space.


1986 ◽  
Vol 29 (4) ◽  
pp. 463-468 ◽  
Author(s):  
Gerald Beer

AbstractLet 〈X, dx〉 and 〈Y, dY〉 be metric spaces and let hp denote Hausdorff distance in X x Y induced by the metric p on X x Y given by p[(x1, y1), (x2, y2)] = max ﹛dx(x1, x2),dY(y1, y2)﹜- Using the fact that hp when restricted to the uniformly continuous functions from X to Y induces the topology of uniform convergence, we exhibit a natural compactness criterion for C(X, Y) when X is compact and Y is complete.


Filomat ◽  
2017 ◽  
Vol 31 (7) ◽  
pp. 1981-1984 ◽  
Author(s):  
Sànchez Cabello

In this short paper, we will show that the space of real valued uniformly continuous functions defined on a metric space (X,d) is a ring if and only if every subset A ? X has one of the following properties: ? A is Bourbaki-bounded, i.e., every uniformly continuous function on X is bounded on A. ? A contains an infinite uniformly isolated subset, i.e., there exist ? > 0 and an infinite subset F ? A such that d(a,x) ? ? for every a ? F, x ? X n \{a}.


1986 ◽  
Vol 33 (3) ◽  
pp. 397-406 ◽  
Author(s):  
Gerald Beer

An Atsuji space is a metric space X such that each continuous function form X to an arbitrary metric space Y is uniformly continuous. We here present (i) characterizations of metric spaces with Atsuji completions; (ii) Cantor-type theorems for Atsuji spaces; (iii) a fixed point theorem for self-maps of an Atsuji space.


1961 ◽  
Vol 13 ◽  
pp. 657-663 ◽  
Author(s):  
Masahiko Atsuji

Recently several topologists have called attention to the uniform structures (in most cases, the coarsest ones) under which every continuous real function is uniformly continuous (let us call the structures the [coarsest] uc-structures), and some important results have been found which closely relate, explicitly or implicitly, to the uc-structures, such as in the vS of Hewitt (3) and in the e-complete space of Shirota (7). Under these circumstances it will be natural to pose, as Hitotumatu did (4), the problem: which are the uniform spaces with the uc-structures? In (1 ; 2), we characterized the metric spaces with such structures, and in this paper we shall give a solution to the problem in uniform spaces (§ 1), together with some of its applications to normal uniform spaces and to the products of metric spaces (§ 2). It is evident that every continuous real function on a uniform space is uniformly continuous if and only if the uniform structure of the space is finer than the uniform structure defined by all continuous real functions on the space.


Sign in / Sign up

Export Citation Format

Share Document