Mode-II fracture behavior evaluation for adhesively bonded pultruded GFRP/steel joint using four-point bending test

2021 ◽  
Vol 167 ◽  
pp. 108130
Author(s):  
Zhengwen Jiang ◽  
Zhi Fang ◽  
Shui Wan ◽  
Kaizhong Xie
2005 ◽  
Vol 502 ◽  
pp. 69-74 ◽  
Author(s):  
Hisashi Serizawa ◽  
Charles Lewinsohn ◽  
Mrityunjay Singh ◽  
Hidekazu Murakawa

In order to examine mode-I & II type fracture behavior of ceramic joints, the interface element was proposed as a simple model which represents the mechanism of failure in an explicit manner. It was applied to the analyses of four point bending test and asymmetrical four point bending test for SiC/SiC composite specimen joined by ARCJoinTTM. By using a new type interface potential, which is a coupled function of opening and shear deformations, both the bending and asymmetrical bending tests were simulated. From comparison with experiments, surface energy at the interface between the joint and composite was estimated to be about 30 N/m regardless of the fracture mode. Also, from the comparison between the predicted strength and the experiments for the tensile test of lap joint of SiC/SiC composites, it was found that the proposed method was considered to have a great potential as a tool to study the failure problems whose fracture type was a mixture of mode-I & II.


2021 ◽  
Vol 1144 (1) ◽  
pp. 012039
Author(s):  
M A Iman ◽  
N Mohamad ◽  
A A A Samad ◽  
Steafenie George ◽  
M A Tambichik ◽  
...  

2021 ◽  
pp. 152808372199377
Author(s):  
Jalil Hajrasouliha ◽  
Mohammad Sheikhzadeh

In the interest of reducing the weight and also cost of blade skins, various automatic preform manufacturing processes were developed including tape laying, filament winding and braiding. Among them, the circular braiding process was found to be an efficient method in producing seamless preforms on mandrels with various geometries. In this regard, an attempt was made to produce a carbon fiber reinforced composite with the shape of NACA 23018 airfoil using a circular braiding machine. Thus, suitable wooden mandrels were manufactured using NACA 23018 airfoil coordinates, which were obtained by assuming the perimeter of 20 cm. Furthermore, both biaxially and triaxially braided preforms were produced and subsequently impregnated with epoxy resin through an appropriate fabrication method. To assess their performance, four-point bending test was carried out on samples. Ultimately, the elastic response of braided composite airfoils was predicted using a meso-scale finite element modeling and was validated with experimental results.


Sign in / Sign up

Export Citation Format

Share Document