PKCδ regulates endothelial basal barrier function through modulation of RhoA GTPase activity

2005 ◽  
Vol 308 (2) ◽  
pp. 407-421 ◽  
Author(s):  
Elizabeth O. Harrington ◽  
Christopher J. Shannon ◽  
Nicole Morin ◽  
Heather Rowlett ◽  
Christopher Murphy ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Laura Rangel ◽  
Miguel Bernabé-Rubio ◽  
Jaime Fernández-Barrera ◽  
Javier Casares-Arias ◽  
Jaime Millán ◽  
...  

2013 ◽  
Vol 99 (3) ◽  
pp. 471-482 ◽  
Author(s):  
Robert Szulcek ◽  
Cora M.L. Beckers ◽  
Jasmina Hodzic ◽  
Jelle de Wit ◽  
Zhenlong Chen ◽  
...  

2015 ◽  
Vol 11 (1) ◽  
pp. 551-558 ◽  
Author(s):  
WEI ZOU ◽  
XIANGDONG MA ◽  
WEI HUA ◽  
BILIANG CHEN ◽  
YANHONG HUANG ◽  
...  

Blood ◽  
2009 ◽  
Vol 113 (1) ◽  
pp. 244-253 ◽  
Author(s):  
Mira Ernkvist ◽  
Nathalie Luna Persson ◽  
Stéphane Audebert ◽  
Patrick Lecine ◽  
Indranil Sinha ◽  
...  

Abstract Controlled regulation of Rho GTPase activity is an essential component mediating growth factor–stimulated migration. We have previously shown that angiomotin (Amot), a membrane-associated scaffold protein, plays a critical role during vascular patterning and endothelial migration during embryogenesis. However, the signaling pathways by which Amot controls directional migration are not known. Here we have used peptide pull-down and yeast 2-hybrid (Y2H) screening to identify proteins that interact with the C-terminal PDZ-binding motifs of Amot and its related proteins AmotL1 and 2. We report that Amot and its related proteins bind to the RhoA GTPase exchange factor (RhoGEF) protein Syx. We show that Amot forms a ternary complex together with Patj (or its paralogue Mupp1) and Syx. Using FRET analysis, we provide evidence that Amot controls targeting of RhoA activity to lamellipodia in vitro. We also report that, similar to Amot, morpholino knockdown of Syx in zebrafish results in inhibition of migration of intersegmental arteries. Taken together, our results indicate that the directional migration of capillaries in the embryo is governed by the Amot:Patj/Mupp1:Syx signaling that controls local GTPase activity.


2010 ◽  
Vol 298 (6) ◽  
pp. L755-L767 ◽  
Author(s):  
Qing Lu ◽  
Elizabeth O. Harrington ◽  
Julie Newton ◽  
Brian Casserly ◽  
Gregory Radin ◽  
...  

We have previously demonstrated that adenosine plus homocysteine enhanced endothelial basal barrier function and protected against agonist-induced barrier dysfunction in vitro through attenuation of RhoA activation by inhibition of isoprenylcysteine-O-carboxyl methyltransferase. In the current study, we tested the effect of elevated adenosine on pulmonary endothelial barrier function in vitro and in vivo. We noted that adenosine alone dose dependently enhanced endothelial barrier function. While adenosine receptor A1 or A3 antagonists were ineffective, an adenosine transporter inhibitor, NBTI, or a combination of DPMX and MRS1754, antagonists for adenosine receptors A2A and A2B, respectively, partially attenuated the barrier-enhancing effect of adenosine. Similarly, inhibition of both A2A and A2B receptors with siRNA also blunted the effect of adenosine on barrier function. Interestingly, inhibition of both transporters and A2A/A2B receptors completely abolished adenosine-induced endothelial barrier enhancement. The adenosine receptor A2A and A2B agonist, NECA, also significantly enhanced endothelial barrier function. These data suggest that both adenosine transporters and A2A and A2B receptors are necessary for exerting maximal effect of adenosine on barrier enhancement. We also found that adenosine enhanced Rac1 GTPase activity and overexpression of dominant negative Rac1 attenuated adenosine-induced increases in focal adhesion complexes. We further demonstrated that elevation of cellular adenosine by inhibition of adenosine deaminase with Pentostatin significantly enhanced endothelial basal barrier function, an effect that was also associated with enhanced Rac1 GTPase activity and with increased focal adhesion complexes and adherens junctions. Finally, using a non-inflammatory acute lung injury (ALI) model induced by α-naphthylthiourea, we found that administration of Pentostatin, which elevated lung adenosine level by 10-fold, not only attenuated the development of edema before ALI but also partially reversed edema after ALI. The data suggest that adenosine deaminase inhibition may be useful in treatment of pulmonary edema in settings of ALI.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Juliana H. Osaki ◽  
Gisele Espinha ◽  
Yuli T. Magalhaes ◽  
Fabio L. Forti

Radiotherapy withγ-radiation is widely used in cancer treatment to induce DNA damage reducing cell proliferation and to kill tumor cells. Although RhoA GTPase overexpression/hyperactivation is observed in many malignancies, the effect of RhoA activity modulation on cancer radiosensitivity has not been previously investigated. Here, we generated stable HeLa cell clones expressing either the dominant negative RhoA-N19 or the constitutively active RhoA-V14 and compared the responses of these cell lines with those of parental HeLa cells, after treatment with low doses ofγ-radiation. HeLa-RhoA-N19 and HeLa-RhoA-V14 clones displayed reduced proliferation and survival compared to parental cells after radiation and became arrested at cell cycle stages correlated with increased cellular senescence and apoptosis. Also, Chk1/Chk2 and histone H2A phosphorylation data, as well as comet assays, suggest that the levels of DNA damage and DNA repair activation and efficiency in HeLa cell lines are correlated with active RhoA. In agreement with these results, RhoA inhibition by C3 toxin expression drastically affected homologous recombination (HR) and nonhomologous end joining (NHEJ). These data suggest that modulation of RhoA GTPase activity impairs DNA damage repair, increasing HeLa cell radiosensitivity.


Author(s):  
Rita Meyer ◽  
Zoltan Posalaky ◽  
Dennis Mcginley

The Sertoli cell tight junctional complexes have been shown to be the most important structural counterpart of the physiological blood-testis barrier. In freeze etch replicas they consist of extensive rows of intramembranous particles which are not only oriented parallel to one another, but to the myoid layer as well. Thus the occluding complex has both an internal and an overall orientation. However, this overall orientation to the myoid layer does not seem to be necessary to its barrier function. The 20 day old rat has extensive parallel tight junctions which are not oriented with respect to the myoid layer, and yet they are inpenetrable by lanthanum. The mechanism(s) for the control of Sertoli cell junction development and orientation has not been established, although such factors as the presence or absence of germ cells, and/or hormones, especially FSH have been implicated.


Sign in / Sign up

Export Citation Format

Share Document