Distribution of d-amino acid oxidase (DAO) activity in the medulla and thoracic spinal cord of the rat: implications for a role for d-serine in autonomic function

1997 ◽  
Vol 771 (2) ◽  
pp. 351-355 ◽  
Author(s):  
Ranjna Kapoor ◽  
Vimal Kapoor
PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0188912 ◽  
Author(s):  
Nazanin Rahmani Kondori ◽  
Praveen Paul ◽  
Jacqueline P. Robbins ◽  
Ke Liu ◽  
John C. W. Hildyard ◽  
...  

2019 ◽  
Vol 166 (2) ◽  
pp. 187-196 ◽  
Author(s):  
Soo Hyeon Kim ◽  
Yuji Shishido ◽  
Hirofumi Sogabe ◽  
Wanitcha Rachadech ◽  
Kazuko Yorita ◽  
...  

Abstract D-amino acid oxidase (DAO) is a flavoenzyme, catalysing oxidative deamination of D-amino acids to produce corresponding α-keto acids, ammonia and hydrogen peroxide. In our search for DAO activity among various tissues, we developed a sensitive assay based on hydrogen peroxide production involving enzyme-coupled colorimetric assay with peroxidase. We first optimized buffer components to extract DAO protein from mouse tissues. Here we show that DAO activity was detected in kidney, cerebellum, medulla oblongata, midbrain and spinal cord, but not in liver. In addition, we observed that DAO activity and expression were decreased in thoracic and lumbar regions of spinal cord in aged mice when compared with young mice, indicating that decreased DAO is involved in motoneuron degeneration during senescence. We also found gender difference in DAO activity in the kidney, suggesting that DAO activity is influenced by sexual dimorphism. We newly detected DAO activity in the epididymis, although undetected in testis. Furthermore, DAO activity was significantly higher in the caput region than corpus and cauda regions of epididymis, indicating that D-amino acids present in the testis are eliminated in epididymis. Taken together, age- and gender-dependent DAO activity in each organ may underlie the human pathophysiology regulated by D-amino acid metabolism.


1996 ◽  
Vol 76 (06) ◽  
pp. 0993-0997
Author(s):  
Zhao-Yan Li ◽  
Xiao-Wei Wu ◽  
Tie-Fu Yu ◽  
Eric C-Y Lian

SummaryBy means of CM-Sephadex C-25, DEAE-Sephadex A-50, Sephadex G-200, and Sephadex G-75 chromatographies, a lupus anticoagulant like protein (LALP) from Agkistrodon halys brevicaudus was purified. On SDS-PAGE, the purified LALP had a molecular weight of 25,500 daltons under non-reducing condition and 15,000 daltons under reducing condition. The isoelectric point was pH 5.6. Its N terminal amino acid sequencing revealed a mixture of 2 sequences: DCP(P/S)(D/G)WSSYEGH(C/R)Q(Q/K). It was devoid of phospho-lipaseA, fibrino(geno)lytic, 5′-nucleotidase, L-amino acid oxidase, phosphomonoesterase, phosphodiesterase and thrombin-like activities, which were found in crude venom. In the presence of LALP, PT, aPTT, and dRVVT of human plasma were markedly prolonged and its effects were concentration-dependent but time-independent. The inhibitory effect of LALP on the plasma clotting time was enhanced by decreasing phospholipid concentration in TTI test. The individual clotting factor activity was not affected by LALP when higher dilutions of LALP-plasma mixture were used for assay. Russell’s viper venom time was shortened when high phospholipid confirmatory reagent was used. Therefore, the protein has lupus anticoagulant property.


1982 ◽  
Vol 48 (03) ◽  
pp. 277-282 ◽  
Author(s):  
I Nathan ◽  
A Dvilansky ◽  
T Yirmiyahu ◽  
M Aharon ◽  
A Livne

SummaryEchis colorata bites cause impairment of platelet aggregation and hemostatic disorders. The mechanism by which the snake venom inhibits platelet aggregation was studied. Upon fractionation, aggregation impairment activity and L-amino acid oxidase activity were similarly separated from the crude venom, unlike other venom enzymes. Preparations of L-amino acid oxidase from E.colorata and from Crotalus adamanteus replaced effectively the crude E.colorata venom in impairment of platelet aggregation. Furthermore, different treatments known to inhibit L-amino acid oxidase reduced in parallel the oxidase activity and the impairment potency of both the venom and the enzyme preparation. H2O2 mimicked characteristically the impairment effects of L-amino acid oxidase and the venom. Catalase completely abolished the impairment effects of the enzyme and the venom. It is concluded that hydrogen peroxide formed by the venom L-amino acid oxidase plays a role in affecting platelet aggregation and thus could contribute to the extended bleeding typical to persons bitten by E.colorata.


2001 ◽  
Vol 45 (4) ◽  
pp. 353 ◽  
Author(s):  
Sung Chan Jin ◽  
Seoung Ro Lee ◽  
Dong Woo Park ◽  
Kyung Bin Joo

2018 ◽  
Vol 46 (05) ◽  
pp. 323-329 ◽  
Author(s):  
Nele Ondreka ◽  
Sara Malberg ◽  
Emma Laws ◽  
Martin Schmidt ◽  
Sabine Schulze

SummaryA 2-year-old male neutered mixed breed dog with a body weight of 30 kg was presented for evaluation of a soft subcutaneous mass on the dorsal midline at the level of the caudal thoracic spine. A further clinical sign was intermittent pain on palpation of the area of the subcutaneous mass. The owner also described a prolonged phase of urination with repeated interruption and re-initiation of voiding. The findings of the neurological examination were consistent with a lesion localization between the 3rd thoracic and 3rd lumbar spinal cord segments. Magnetic resonance imaging revealed a spina bifida with a lipomeningocele and diplomyelia (split cord malformation type I) at the level of thoracic vertebra 11 and 12 and secondary syringomyelia above the aforementioned defects in the caudal thoracic spinal cord. Surgical resection of the lipomeningocele via a hemilaminectomy was performed. After initial deterioration of the neurological status postsurgery with paraplegia and absent deep pain sensation the dog improved within 2 weeks to non-ambulatory paraparesis with voluntary urination. Six weeks postoperatively the dog was ambulatory, according to the owner. Two years after surgery the owner recorded that the dog showed a normal gait, a normal urination and no pain. Histopathological diagnosis of the biopsied material revealed a lipomeningocele which confirmed the radiological diagnosis.


Author(s):  
Hong Wei ◽  
Zuyue Chen ◽  
Ari Koivisto ◽  
Antti Pertovaara

Abstract Background Earlier studies show that endogenous sphingolipids can induce pain hypersensitivity, activation of spinal astrocytes, release of proinflammatory cytokines and activation of TRPM3 channel. Here we studied whether the development of pain hypersensitivity induced by sphingolipids in the spinal cord can be prevented by pharmacological inhibition of potential downstream mechanisms that we hypothesized to include TRPM3, σ1 and NMDA receptors, gap junctions and D-amino acid oxidase. Methods Experiments were performed in adult male rats with a chronic intrathecal catheter for spinal drug administrations. Mechanical nociception was assessed with monofilaments and heat nociception with radiant heat. N,N-dimethylsphingosine (DMS) was administered to induce pain hypersensitivity. Ononetin, isosakuranetin, naringenin (TRPM3 antagonists), BD-1047 (σ1 receptor antagonist), carbenoxolone (a gap junction decoupler), MK-801 (NMDA receptor antagonist) and AS-057278 (inhibitor of D-amino acid oxidase, DAAO) were used to prevent the DMS-induced hypersensitivity, and pregnenolone sulphate (TRPM3 agonist) to recapitulate hypersensitivity. Results DMS alone produced within 15 min a dose-related mechanical hypersensitivity that lasted at least 24 h, without effect on heat nociception. Preemptive treatments with ononetin, isosakuranetin, naringenin, BD-1047, carbenoxolone, MK-801 or AS-057278 attenuated the development of the DMS-induced hypersensitivity, but had no effects when administered alone. Pregnenolone sulphate (TRPM3 agonist) alone induced a dose-related mechanical hypersensitivity that was prevented by ononetin, isosakuranetin and naringenin. Conclusions Among spinal pronociceptive mechanisms activated by DMS are TRPM3, gap junction coupling, the σ1 and NMDA receptors, and DAAO.


Sign in / Sign up

Export Citation Format

Share Document