scholarly journals Characterisation of the pathogenic effects of the in vivo expression of an ALS-linked mutation in D-amino acid oxidase: Phenotype and loss of spinal cord motor neurons

PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0188912 ◽  
Author(s):  
Nazanin Rahmani Kondori ◽  
Praveen Paul ◽  
Jacqueline P. Robbins ◽  
Ke Liu ◽  
John C. W. Hildyard ◽  
...  
2013 ◽  
Vol 1 (1) ◽  
Author(s):  
Seth C. Hopkins ◽  
Una C. Campbell ◽  
Michele L. R. Heffernan ◽  
Kerry L. Spear ◽  
Ross D. Jeggo ◽  
...  

2004 ◽  
Vol 287 (1) ◽  
pp. E160-E165 ◽  
Author(s):  
Hiroshi Hasegawa ◽  
Takehisa Matsukawa ◽  
Yoshihiko Shinohara ◽  
Ryuichi Konno ◽  
Takao Hashimoto

d-Amino acids are now recognized to be widely present in mammals. Renal d-amino-acid oxidase (DAO) is associated with conversion of d-amino acids to the corresponding α-keto acids, but its contribution in vivo is poorly understood because the α-keto acids and/or l-amino acids formed are indistinguishable from endogenous compounds. First, we examined whether DAO is indispensable for conversion of d-amino acids to their α-keto acids by using the stable isotope tracer technique. After a bolus intravenous administration of d-[2H7]leucine to mutant mice lacking DAO activity (ddY/DAO−) and normal mice (ddY/DAO+), elimination of d-[2H7]leucine and formation of α-[2H7]ketoisocaproic acid ([2H7]KIC) and l-[2H7]leucine in plasma were determined. The ddY/DAO− mice, in contrast to ddY/DAO+ mice, failed to convert d-[2H7]leucine to [2H7]KIC and l-[2H7]leucine. This result clearly revealed that DAO was indispensable for the process of chiral inversion of d-leucine. We further investigated the effect of renal mass reduction by partial nephrectomy on elimination of d-[2H7]leucine and formation of [2H7]KIC and l-[2H7]leucine. Renal mass reduction slowed down the elimination of d-[2H7]leucine. The fraction of conversion of d-[2H7]leucine to [2H7]KIC in sham-operated rats was 0.77, whereas that in five-sixths-nephrectomized rats was 0.25. The elimination behavior of d-[2H7]leucine observed in rats suggested that kidney was the principal organ responsible for converting d-leucine to KIC.


2010 ◽  
Vol 25 (6) ◽  
pp. 1454-1459 ◽  
Author(s):  
Zainiharyati M. Zain ◽  
Robert D. O’Neill ◽  
John P. Lowry ◽  
Kenneth W. Pierce ◽  
Mark Tricklebank ◽  
...  

2021 ◽  
Author(s):  
Hiroyuki Nunoi ◽  
Peiyu Xie ◽  
Hideaki Nakamura ◽  
Yasuaki Aratani ◽  
Jun Fang ◽  
...  

Abstract We previously reported that polyethylene glycol-conjugated recombinant porcine D-amino acid oxidase (PEG-pDAO) could supply reactive oxygen species (ROS) to defective NADPH oxidase in neutrophils of patients with chronic granulomatous disease (CGD), and neutrophils regain bactericidal activity in vitro. In the present study, we employed an in vivo nonviable Candida albicans (nCA)-induced lung inflammation model using gp91-phox knockout CGD mice and novel PEG conjugates of Fusarium spp. D-amino acid oxidase (PEG-fDAO), rather than PEG-pDAO. Using three experimentation strategies with the in vivo lung inflammation model, the mouse body weight, lung weight, and lung pathology were evaluated to confirm the efficacy of ROS-generating enzyme replacement therapy with PEG-fDAO. The lung weight and pathological findings were significantly ameliorated by the administration of PEG-fDAO followed by intraperitoneal injection of D-phenylalanine or D-proline. These data suggest that PEG- fDAO with the function of targeted delivery to the nCA-induced inflammation site is applicable in the treatment of inflammation in CGD in vivo.


2014 ◽  
Vol 35 (4) ◽  
pp. 876-885 ◽  
Author(s):  
Praveen Paul ◽  
Tytus Murphy ◽  
Zainab Oseni ◽  
Suganthinie Sivalokanathan ◽  
Jacqueline S. de Belleroche

2016 ◽  
Vol 91 (1) ◽  
pp. 427-437 ◽  
Author(s):  
Lisanne Luks ◽  
Silvia Sacchi ◽  
Loredano Pollegioni ◽  
Daniel R. Dietrich

2012 ◽  
Vol 80 (4) ◽  
pp. 1546-1553 ◽  
Author(s):  
Hideaki Nakamura ◽  
Jun Fang ◽  
Hiroshi Maeda

ABSTRACTd-Amino acid oxidase (DAO) is a hydrogen peroxide-generating enzyme that uses ad-amino acid as a substrate. We hypothesized that DAO may protect against bacterial infection, because hydrogen peroxide is one of the most important molecules in the antibacterial defense systems in mammals. We show here that DAO suppressed the growth ofStaphylococcus aureusin a manner that depended on the concentration of DAO andd-amino acidin vitro. Addition of catalase abolished the bacteriostatic activity of DAO. Although DAO plusd-Ala showed less bactericidal activity, addition of myeloperoxidase (MPO) greatly enhanced the bactericidal activity of DAO. Furthermore, DAO was able to utilize bacterial lysate, which containsd-Ala derived from peptidoglycan; this could produce hydrogen peroxide with, in the presence of myeloperoxidase, formation of hypochlorous acid. This concerted reaction of DAO and MPO led to the bactericidal action.In vivoexperiments showed that DAO−/−(mutant) mice were more susceptible toS. aureusinfection than were DAO+/+(wild-type) mice. These results suggest that DAO, together with myeloperoxidase, may play an important role in antibacterial systems in mammals.


Sign in / Sign up

Export Citation Format

Share Document