Modulatory effect of l-NAME, a specific nitric oxide synthase (NOS) inhibitor, on stress-induced changes in plasma adrenocorticotropic hormone (ACTH) and corticosterone levels in rats: physiological significance of stress-induced NOS activation in hypothalamic–pituitary–adrenal axis

1997 ◽  
Vol 776 (1-2) ◽  
pp. 68-74 ◽  
Author(s):  
Toru Tsuchiya ◽  
Jiro Kishimoto ◽  
Junichi Koyama ◽  
Tatsuya Ozawa
2011 ◽  
Vol 301 (3) ◽  
pp. H721-H729 ◽  
Author(s):  
Katsuhiko Noguchi ◽  
Naobumi Hamadate ◽  
Toshihiro Matsuzaki ◽  
Mayuko Sakanashi ◽  
Junko Nakasone ◽  
...  

An elevation of oxidized forms of tetrahydrobiopterin (BH4), especially dihydrobiopterin (BH2), has been reported in the setting of oxidative stress, such as arteriosclerotic/atherosclerotic disorders, where endothelial nitric oxide synthase (eNOS) is dysfunctional, but the role of BH2 in the regulation of eNOS activity in vivo remains to be evaluated. This study was designed to clarify whether increasing BH2 concentration causes endothelial dysfunction in rats. To increase vascular BH2 levels, the BH2 precursor sepiapterin (SEP) was intravenously given after the administration of the specific dihydrofolate reductase inhibitor methotrexate (MTX) to block intracellular conversion of BH2 to BH4. MTX/SEP treatment did not significantly affect aortic BH4 levels compared with control treatment. However, MTX/SEP treatment markedly augmented aortic BH2 levels (291.1 ± 29.2 vs. 33.4 ± 6.4 pmol/g, P < 0.01) in association with moderate hypertension. Treatment with MTX alone did not significantly alter blood pressure or BH4 levels but decreased the BH4-to-BH2 ratio. Treatment with MTX/SEP, but not with MTX alone, impaired ACh-induced vasodilator and depressor responses compared with the control treatment (both P < 0.05) and also aggravated ACh-induced endothelium-dependent relaxations ( P < 0.05) of isolated aortas without affecting sodium nitroprusside-induced endothelium-independent relaxations. Importantly, MTX/SEP treatment significantly enhanced aortic superoxide production, which was diminished by NOS inhibitor treatment, and the impaired ACh-induced relaxations were reversed with SOD ( P < 0.05), suggesting the involvement of eNOS uncoupling. These results indicate, for the first time, that increasing BH2 causes eNOS dysfunction in vivo even in the absence of BH4 deficiency, demonstrating a novel insight into the regulation of endothelial function.


2015 ◽  
Vol 118 (9) ◽  
pp. 1113-1121 ◽  
Author(s):  
Yet Hoi Hong ◽  
Tony Frugier ◽  
Xinmei Zhang ◽  
Robyn M. Murphy ◽  
Gordon S. Lynch ◽  
...  

Inhibition of nitric oxide synthase (NOS) significantly attenuates the increase in skeletal muscle glucose uptake during contraction/exercise, and a greater attenuation is observed in individuals with Type 2 diabetes compared with healthy individuals. Therefore, NO appears to play an important role in mediating muscle glucose uptake during contraction. In this study, we investigated the involvement of neuronal NOSμ (nNOSμ), the main NOS isoform activated during contraction, on skeletal muscle glucose uptake during ex vivo contraction. Extensor digitorum longus muscles were isolated from nNOSμ−/−and nNOSμ+/+mice. Muscles were contracted ex vivo in a temperature-controlled (30°C) organ bath with or without the presence of the NOS inhibitor NG-monomethyl-l-arginine (L-NMMA) and the NOS substrate L-arginine. Glucose uptake was determined by radioactive tracers. Skeletal muscle glucose uptake increased approximately fourfold during contraction in muscles from both nNOSμ−/−and nNOSμ+/+mice. L-NMMA significantly attenuated the increase in muscle glucose uptake during contraction in both genotypes. This attenuation was reversed by L-arginine, suggesting that L-NMMA attenuated the increase in muscle glucose uptake during contraction by inhibiting NOS and not via a nonspecific effect of the inhibitor. Low levels of NOS activity (∼4%) were detected in muscles from nNOSμ−/−mice, and there was no evidence of compensation from other NOS isoform or AMP-activated protein kinase which is also involved in mediating muscle glucose uptake during contraction. These results indicate that NO regulates skeletal muscle glucose uptake during ex vivo contraction independently of nNOSμ.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Patrick Nicholas Colleran ◽  
Miles A. Tanner ◽  
Shena L. Latcham ◽  
Sara L. Collier ◽  
M. Harold Laughlin ◽  
...  

1995 ◽  
Vol 7 (6) ◽  
pp. 1505 ◽  
Author(s):  
Iulio JL Di ◽  
NM Gude ◽  
RG King ◽  
SP Brennecke

The aim of this study was to determine whether any labour-associated changes in nitric oxide synthase (NOS) activity occur in human placenta and fetal membranes. NOS activity in amnion, choriodecidua, and placenta obtained from women before (at Caesarean section, not in labour), during (at Caesarean section, in labour) and after (spontaneous onset labour, normal vaginal delivery) labour was assessed by measuring conversion of radio-labelled L-arginine to L-citrulline. NOS activity, as judged by its inhibition by the specific NOS inhibitor N omega-nitro-L-arginine, was present in placental and amnionic tissues, but not in choriodecidual tissue specimens. Activity detected in choriodecidua was significantly blocked during incubation with a high concentration of valine, suggesting that L-arginine was being consumed by reactions other than NOS under the experimental conditions in that tissue. There were no significant differences among the labour groups in either amnion or placental NOS activities measured in the presence of 1 microM L-arginine. Amnion NOS activity was significantly less than that in placenta. Placental V(max) and Km values (determined after removal of endogenous L-arginine) did not differ significantly among the different labour groups.


Sign in / Sign up

Export Citation Format

Share Document