S1577 Endothelin Inhibits Both In Vivo and In Vitro Cholangiocarcinoma Growth By a Decrease in Vascular Endothelial Growth Factor (VEGF) Expression

2009 ◽  
Vol 136 (5) ◽  
pp. A-817
Author(s):  
Giammarco Fava ◽  
Sharon DeMorrow ◽  
Heather Francis ◽  
Eugenio Gaudio ◽  
Paolo Onori ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Junxiu Zhang ◽  
Ke Mao ◽  
Qing Gu ◽  
Xingwei Wu

Background: The purpose of this study is to investigate the antiangiogenic effect of Sanguinarine chloride (SC) on models of age-related macular degeneration (AMD) both in vivo and in vitro.Methods: Choroidal neovascularization (CNV) was conducted by laser photocoagulation in C57BL6/J mice. SC (2.5 μM, 2 μl/eye) was intravitreally injected immediately after laser injury. The control group received an equal amount of PBS. 7 days after laser injury, CNV severity was evaluated using fundus fluorescein angiography, hematoxylin and eosin (H&E) staining, and choroid flat-mount staining. Vascular endothelial growth factor (VEGF) expression in the retina/choroid complex was measured by western blot analysis and ELISA kit. In vitro, human retinal microvascular endothelial cells (HRMECs) were used to investigate the effects of SC on cell tube formation, migration, and cytotoxicity. The expression of VEGF-induced expression of extracellular signal-regulated kinase (ERK)1/2, protein kinase B (AKT), mitogen-activated protein kinases (p38-MAPK) in vitro and laser induced VEGF expression in vivo were also analyzed.Results: SC (≤2.5 μM) was safe both in vitro and in vivo. Intravitreal injection of SC restrained the formation of laser induced CNV in mice and decreased VEGF expression in the laser site of the retina/choroid complex. In vitro, SC inhibited VEGF-induced tube formation and endothelial cell migration by decreasing the phosphorylation of AKT, ERK1/2, and p38-MAPK in HRMECs.Conclusions: SC could inhibit laser-induced CNV formation via down-regulating VEGF expression and restrain the VEGF-induced tube formation and endothelial migration. Therefore, SC could be a potential candidate for the treatment of wet AMD.


2003 ◽  
Vol 55 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Michael D. Mueller ◽  
Elizabeth A. Pritts ◽  
Charles J. Zaloudek ◽  
Ekkehard Dreher ◽  
Robert N. Taylor

Blood ◽  
1998 ◽  
Vol 92 (11) ◽  
pp. 4150-4166 ◽  
Author(s):  
Dmitry Gabrilovich ◽  
Tadao Ishida ◽  
Tsunehiro Oyama ◽  
Sophia Ran ◽  
Vladimir Kravtsov ◽  
...  

Abstract Defective function of dendritic cells (DC) in cancer has been recently described and may represent one of the mechanisms of tumor evasion from immune system control. We have previously shown in vitro that vascular endothelial growth factor (VEGF), produced by almost all tumors, is one of the tumor-derived factors responsible for the defective function of these cells. In this study, we investigated whether in vivo infusion of recombinant VEGF could reproduce the observed DC dysfunction. Continuous VEGF infusion, at rates as low as 50 ng/h (resulting in serum VEGF concentrations of 120 to 160 pg/mL), resulted in a dramatic inhibition of dendritic cell development, associated with an increase in the production of B cells and immature Gr-1+ myeloid cells. Infusion of VEGF was associated with inhibition of the activity of the transcription factor NF-κB in bone marrow progenitor cells. Experiments in vitro showed that VEGF itself, and not factors released by VEGF-activated endothelial cells, affected polypotent stem cells resulting in the observed abnormal hematopoiesis. These data suggest that VEGF, at pathologically relevant concentrations in vivo, may exert effects on pluripotent stem cells that result in blocked DC development as well as affect many other hematopoietic lineages.


2006 ◽  
Vol 14 (3) ◽  
pp. 237-248 ◽  
Author(s):  
Anne Schänzer ◽  
Frank-Peter Wachs ◽  
Daniel Wilhelm ◽  
Till Acker ◽  
Christiana Cooper-Kuhn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document