tube formation
Recently Published Documents


TOTAL DOCUMENTS

2021
(FIVE YEARS 729)

H-INDEX

96
(FIVE YEARS 12)

2022 ◽  
Vol 140 ◽  
pp. 104297
Author(s):  
Fengyang Li ◽  
Xue Gou ◽  
Dan Xu ◽  
Dan Han ◽  
Kai Hou ◽  
...  

2022 ◽  
Vol 15 (1) ◽  
pp. 31-39
Author(s):  
Wei-Qiang Tang ◽  
◽  
Jing Lin ◽  

AIM: To determine the role of heparanase-1 (HPSE-1) in orbital rhabdomyosarcoma (RMS), and to investigate the feasibility of HPSE-1 targeted therapy for RMS. METHODS: Immunohistochemistry was performed to analyze HPSE-1 expression in 51 cases of orbital RMS patients (including 28 cases of embryonal RMS and 23 cases of alveolar RMS), among whom there were 27 treated and 24 untreated with preoperative chemoradiotherapy. In vitro, studies were conducted to examine the effect of HPSE-1 silencing on RMS cell proliferation and tube formation of human umbilical vein endothelial cells (HUVECs). RD cells (an RMS cell line) and HUVECs were infected with HPSE-1 shRNA lentivirus at a multiplicity of infection (MOI) of 10 and 30 separately. Real-time PCR and Western blot were applied to detect the mRNA and protein expression levels of HPSE-1. Cell viability of treated or control RD cells was evaluated by cell counting kit-8 (CCK-8) assay. Matrigel tube formation assay was used to evaluate the effect of HPSE-1 RNAi on the tube formation of HUVECs. RESULTS: Immunohistochemistry showed that the expression rate of HPSE-1 protein was 92.9% in orbital embryonal RMS and 91.3% in orbital alveolar RMS. Tissue from alveolar orbital RMS did not show relatively stronger staining than that from the embryonal orbital RMS. However, despite the types of RMS, comparing the cases treated chemoradiotherapy with those untreated, we have observed that chemoradiotherapy resulted in weaker staining in patients' tissues. The expression levels of HPSE-1 declined significantly in both the mRNA and protein levels in HPSE-1 shRNA transfected RD cells. The CCK-8 assay showed that lentivirus-mediated HPSE-1 silencing resulted in significantly reduced RD cells viability in vitro. Silencing HPSE-1 expression also inhibited VEGF-induced tube formation of HUVECs in Matrigel. CONCLUSION: HPSE-1 silencing may be a promising therapy for the inhibition of orbital RMS progression.


2022 ◽  
Vol 8 ◽  
Author(s):  
Darukeshwara Joladarashi ◽  
Yanan Zhu ◽  
Matthew Willman ◽  
Kevin Nash ◽  
Maria Cimini ◽  
...  

Diabetic cardiomyopathy (DCM) is characterized by microvascular pathology and interstitial fibrosis that leads to progressive heart failure. The mechanisms underlying DCM pathogenesis remain obscure, and no effective treatments for the disease have been available. In the present study, we observed that STK35, a novel kinase, is decreased in the diabetic human heart. High glucose treatment, mimicking hyperglycemia in diabetes, downregulated STK35 expression in mouse cardiac endothelial cells (MCEC). Knockdown of STK35 attenuated MCEC proliferation, migration, and tube formation, whereas STK35 overexpression restored the high glucose-suppressed MCEC migration and tube formation. Angiogenesis gene PCR array analysis revealed that HG downregulated the expression of several angiogenic genes, and this suppression was fully restored by STK35 overexpression. Intravenous injection of AAV9-STK35 viral particles successfully overexpressed STK35 in diabetic mouse hearts, leading to increased vascular density, suppression of fibrosis in the heart, and amelioration of left ventricular function. Altogether, our results suggest that hyperglycemia downregulates endothelial STK35 expression, leading to microvascular dysfunction in diabetic hearts, representing a novel mechanism underlying DCM pathogenesis. Our study also emerges STK35 is a novel gene therapeutic target for preventing and treating DCM.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261498
Author(s):  
Fengshan Gan ◽  
Liu Liu ◽  
Qingzhu Zhou ◽  
Wenli Huang ◽  
Xinwei Huang ◽  
...  

Background A paracrine mechanism is thought to mediate the proangiogenic capacity of adipose-derived stromal/stem cells (ASCs). However, the precise mechanism by which ASCs promote the formation of blood vessels by endothelial progenitor cells (EPCs) is unclear. Methods The EPCs-ASCs cocultures prepared in different ratios were subjected to tube formations assay to verify whether ASCs could directly participate in the tube genesis. The supernatant from cultured ASCs was used to stimulate EPCs to evaluate the effects on the angiogenic property of EPCs, as well as capacity for migration and invasion. A coculture model with transwell chamber were used to explore the regulation of angiogenesis markers expression in EPCs by ASCs. We then mixed ASCs with EPCs and transplanted them with adipose tissue into nude mice to evaluate the effects on angiogenesis in adipose tissue grafts. Results In the EPCs-ASCs cocultures, the tube formation was significantly decreased as the relative abundance of ASCs increased, while the ASCs was found to migrate and integrated into the agglomerates formed by EPCs. The supernatant from ASCs cultures promoted the migration and invasion of EPCs and the ability to form capillary-like structures. The expression of multiple angiogenesis markers in EPCs were significantly increased when cocultured with ASCs. In vivo, ASCs combined with EPC promoted vascularization in the fat transplant. Immunofluorescence straining of Edu and CD31 indicated that the Edu labeled EPC did not directly participate in the vascularization inside the fat tissue. Conclusions ADSC can participate in the tube formation of EPC although it cannot form canonical capillary structures. Meanwhile, Soluble factors secreted by ASCs promotes the angiogenic potential of EPCs. ASCs paracrine signaling appears to promote angiogenesis by increasing the migration and invasion of EPCs and simultaneously upregulating the expression of angiogenesis markers in EPCs. The results of in vivo experiments showed that ASCs combined with EPCs significantly promote the formation of blood vessels in the fat implant. Remarkably, EPCs may promote angiogenesis by paracrine regulation of endogenous endothelial cells (ECs) rather than direct participation in the formation of blood vessels.


Author(s):  
Shuxian Li ◽  
Anna Li ◽  
Liping Zhai ◽  
Yaqiong Sun ◽  
Ling Yu ◽  
...  

Abstract Purpose The dysfunction of trophoblast during inflammation plays an important role in PE. Formyl peptide receptor 2 (FPR2) plays crucial roles in the development of inflammation-associated disease. This present study aimed to explore the effect of FPR2 on a trophoblast cellular model of preeclampsia. Methods The expression of FPR2 in placenta was detected by immunohistochemical staining and western blotting. Transfection of siRNA was used to knockdown FPR2 in HTR-8/SVneo cells. Inflammatory cytokines were detected by ELISA. CCK8, Transwell, wound healing, FACS and tube formation assays were performed to observe the abilities of cell proliferation, migration, invasion, apoptosis and angiogenesis. Western blotting was implemented to clarify that NF-κB signaling pathway was downstream of FPR2. Results The expression levels of FPR2 were higher in placental tissues of patients with PE. Knockdown of FPR2 expression by siFPR2 or inhibition of its activity by WRW4 decreased the release of proinflammatory cytokines in HTR8/SVneo cells treated with LPS. Knockdown of FPR2 expression or inhibition of its activity further reversed the LPS-induced attenuation of the proliferation, migration, invasion and angiogenesis and increase in apoptosis in HTR8/SVneo cells. Moreover, the NF-κB signaling pathway was activated in both placental tissues of patients with PE and LPS-treated HTR8/SVneo cells. However, the activation was attenuated when FPR2 was knocked down or inhibited. Conclusion Suppression of FPR2 expression alleviated the effects of inflammation induced by LPS on trophoblasts via the NF-κB signaling pathway, which provided a novel and potential strategy for the treatment of PE.


2022 ◽  
Vol 8 ◽  
Author(s):  
Yinjie Guo ◽  
Canxia Xu ◽  
Linfang Zhang ◽  
Zhiheng Chen ◽  
Xiujuan Xia

Background: Studies show inconsistent results regarding the relationship between Helicobacter pylori (H. pylori) infection and stroke. The present study assessed a potential association between H. pylori infection and an important risk factor for stroke, intracranial atherosclerosis.Methods: In total, 15,798 subjects with transcranial Doppler (TCD) and 13C-urea breath test (13C-UBT) were enrolled from March 2012 to March 2017. Intracranial atherosclerosis was further measured using intracranial carotid artery calcification (ICAC) on past or recent head CT, and 14,084 subjects were ultimately included in the study. Baseline demographics, atherosclerosis risk factors, and laboratory results were investigated. Since endothelial dysfunction is critical to the development of atherosclerosis, the role of H. pylori in migration, tube formation, and proliferation of human brain microvascular endothelial cells (HBMECs) was assessed in vitro.Results: The intracranial atherosclerosis group had a higher proportion of women and a greater rate of H. pylori infection than those without intracranial atherosclerosis. H. pylori infection was significantly more common in women with intracranial atherosclerosis than males. In addition, the incidence of intracranial atherosclerosis was significantly higher in women with H. pylori infection than uninfected women (53.8 vs. 46.4%, p < 0.001). In an adjusted model, H. pylori was shown to be an independent risk factor for intracranial atherosclerosis in women ≤ 60 years of age [odds ratio (OR) = 2.261, 95% CI = 1.839–2.780, p < 0.001]. Serum exosomes from patients with H. pylori infection had significantly reduced brain endothelial cell migration, tube formation, and proliferation in vitro.Conclusion:Helicobacter pylori infection may be an important independent risk factor for intracranial atherosclerosis in women ≤ 60 years of age.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Liem Thanh Nguyen ◽  
Nghia Trung Tran ◽  
Uyen Thi Trang Than ◽  
Minh Quang Nguyen ◽  
Anh Minh Tran ◽  
...  

Abstract Background Although umbilical cord blood (UCB) is identified as a source of mesenchymal stem cells (MSCs) with various advantages, the success in cell isolation is volatile. Therefore, it is necessary to optimize methods of cord blood-derived MSC (UCB-MSC) isolation and culture. In this study, we evaluated the efficiency of UCB-MSC isolation and expansion using different commercially available serum- and xeno-free media and investigated the capacity of autologous serum and plasma as a supplement to support cell proliferation. Additionally, we defined the presence of multilineage-differentiating stress-enduring (Muse) cells in the UCB-MSC population. Functions of UCB-MSC in in vitro angiogenesis processes and anti-cancer were also verified. Methods Mononuclear cells were isolated using density gradient separation and cultured in four commercial media kits, as well as four surface coating solutions. UCB-MSCs were characterized and tested on tube formation assay, and co-cultured with SK-MEL cells in a transwell system. Results The results showed that only StemMACS™ MSC Expansion Media is more appropriate to isolate and culture UCB-MSCs. The cells exhibited a high cell proliferation rate, CFU forming capability, MSC surface marker expression, trilineage differentiate potential, and chromosome stability. In addition, the culture conditions with autologous serum coating and autologous plasma supplement enhanced cell growth and colony forming. This cell population contained Muse cells at rate of 0.3%. Moreover, UCB-MSCs could induce the tube formation of human umbilical vein endothelial cells and inhibit more than 50% of SK-MEL cell growth. Conclusions UCB-MSCs could be high-yield isolated and expanded under serum- and xeno-free conditions by using the StemMACS™ MSC Expansion Media kit. Autologous serum coating and plasma supplement enhanced cell proliferation. These UCB-MSCs had effected the tube formation process and an anti-cancer impact.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Hongchao Yao ◽  
Linli Tian ◽  
Bingrui Yan ◽  
Like Yang ◽  
Yushan Li

Abstract Background Nasopharyngeal carcinoma (NPC) is a deadly cancer, mainly presenting in southeast and east Asia. Long noncoding RNAs (lncRNAs) play essential roles in cancer progression. Exosomes are critical for intercellular communication. Thus, the aim of this study was to identify the functional lncRNAs in NPC and its relevant mechanisms. Methods Data from public databases were utilized to screen for functional lncRNAs in NPC. Functional and mechanical experiments were performed to determine the role of lncRNAs in NPC and its relative molecular mechanisms. Exosomes derived from NPC cells were isolated to determine their function in tumor-associated macrophages. Results LncRNA TP73-AS1 was increased in NPC cells and tissues and was associated with a poor prognosis. TP73-AS1 overexpression promoted proliferation, colony formation, and DNA synthesis of NPC cells while TP73-AS1 knockdown showed opposite roles. TP73-AS1 could directly bind with miR-342-3p. MiR-342-3p overexpression attenuated the effect of TP73-AS1 in NPC cells. Furthermore, TP73-AS1 was transferred by exosomes to promote M2 polarization of macrophages. Lastly, exosomal TP73-AS1 enhanced the motility and tube formation of macrophages. Conclusions Together, this study suggests that TP73-AS1 promotes NPC progression through targeting miR-342-3p and exosome-based communication with macrophages and that TP73-AS1 might be an emerging biomarker for NPC.


Author(s):  
Hee‐Seop Lee ◽  
Hee‐Jung Song ◽  
Yeonhwa Park ◽  
Dmitriy Smolensky ◽  
Seong‐Ho Lee

2022 ◽  
Author(s):  
Vishakha Vishwakarma ◽  
Thao Phuong Le ◽  
SeYeon Chung

Epithelial tube formation requires Rho1-dependent actomyosin contractility to generate the cellular forces that drive cell shape changes and rearrangement. Rho1 signaling is activated by G protein-coupled receptor (GPCR) signaling at the cell surface. During Drosophila embryonic salivary gland (SG) invagination, the GPCR ligand Folded gastrulation (Fog) activates Rho1 signaling to drive apical constriction. The SG receptor that transduces the Fog signal into Rho1-dependent myosin activation has not been identified. Here, we reveal that the Smog GPCR transduces Fog signal to regulate Rho kinase accumulation and myosin activation in the apicomedial region of cells to control apical constriction during SG invagination. We also report on unexpected Fog-independent roles for Smog in maintaining epithelial integrity and organizing cortical actin. Our data supports a model wherein Smog regulates distinct myosin pools and actin cytoskeleton in a ligand-dependent manner during epithelial tube formation.


Sign in / Sign up

Export Citation Format

Share Document