A new concept regarding gastric acid secretion mechanism. involvement of gastric parietal cells membrane carbonic anhydrase IV in HCL secretion

1998 ◽  
Vol 114 ◽  
pp. A263
Author(s):  
I. Puscas
2005 ◽  
Vol 169 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Atsushi Tamura ◽  
Shojiro Kikuchi ◽  
Masaki Hata ◽  
Tatsuya Katsuno ◽  
Takeshi Matsui ◽  
...  

Loss of gastric acid secretion is pathologically known as achlorhydria. Acid-secreting parietal cells are characterized by abundant expression of ezrin (Vil2), one of ezrin/radixin/moesin proteins, which generally cross-link actin filaments with plasma membrane proteins. Here, we show the direct in vivo involvement of ezrin in gastric acid secretion. Ezrin knockout (Vil2−/−) mice did not survive >1.5 wk after birth, making difficult to examine gastric acid secretion. We then generated ezrin knockdown (Vil2kd/kd) mice by introducing a neomycin resistance cassette between exons 2 and 3. Vil2kd/kd mice born at the expected Mendelian ratio exhibited growth retardation and a high mortality. Approximately 7% of Vil2kd/kd mice survived to adulthood. Ezrin protein levels in Vil2kd/kd stomachs decreased to <5% of the wild-type levels without compensatory up-regulation of radixin or moesin. Adult Vil2kd/kd mice suffered from severe achlorhydria. Immunofluorescence and electron microscopy revealed that this achlorhydria was caused by defects in the formation/expansion of canalicular apical membranes in gastric parietal cells.


2003 ◽  
Vol 284 (6) ◽  
pp. G1093-G1103 ◽  
Author(s):  
Snezana Petrovic ◽  
Xie Ju ◽  
Sharon Barone ◽  
Ursula Seidler ◽  
Seth L. Alper ◽  
...  

The basolateral Cl−/HCO[Formula: see text] exchanger in parietal cells plays an essential role in gastric acid secretion mediated via the apical gastric H+-K+-ATPase. Here, we report the identification of a new Cl−/HCO[Formula: see text]exchanger, which shows exclusive expression in mouse stomach and kidney, with expression in the stomach limited to the basolateral membrane of gastric parietal cells. Tissue distribution studies by RT-PCR and Northern hybridizations demonstrated the exclusive expression of this transporter, also known as SLC26A7, to stomach and kidney, with the stomach expression significantly more abundant. No expression was detected in the intestine. Cellular distribution studies by RT-PCR and Northern hybridizations demonstrated predominant localization of SLC26A7 in gastric parietal cells. Immunofluorescence labeling localized this exchanger exclusively to the basolateral membrane of gastric parietal cells, and functional studies in oocytes indicated that SLC26A7 is a DIDS-sensitive Cl−/HCO[Formula: see text] exchanger that is active in both acidic and alkaline pHi. On the basis of its unique expression pattern and function, we propose that SLC26A7 is a basolateral Cl−/HCO[Formula: see text] exchanger in gastric parietal cells and plays a major role in gastric acid secretion.


2000 ◽  
Vol 278 (1) ◽  
pp. G24-G31 ◽  
Author(s):  
N. Pausawasdi ◽  
S. Ramamoorthy ◽  
V. Stepan ◽  
J. del Valle ◽  
A. Todisco

We examined the regulation and functional role of p38 kinase in gastric acid secretion. p38 kinase was immunoprecipitated from cell lysates of highly purified gastric parietal cells in primary culture, and its activity was quantitated by in vitro kinase assay. Carbachol effects were dose- and time-dependent, with a maximal 10-fold stimulatory effect detected after 30 min of incubation. SB-203580, a highly selective inhibitor of p38 kinase, blocked carbachol induction of p38 kinase activity, with maximal inhibition at 10 μM. Stimulation by carbachol was unaffected by preincubation of parietal cells with the intracellular Ca2+chelator BAPTA-AM, but incubation of cells in Ca2+-free medium led to a 50% inhibition of carbachol induction of p38 kinase activity. Because some of the effects of carbachol are mediated by the small GTP-binding protein Rho, we examined the role of Rho in carbachol induction of p38 kinase activity. We tested the effect of exoenzyme C3 from Clostridium botulinum (C3), a toxin known to ADP-ribosylate and specifically inactivate Rho. C3 led to complete ADP-ribosylation of Rho, and it inhibited carbachol induction of p38 kinase by 50%. We then tested the effect of SB-203580 and C3 on carbachol-stimulated uptake of [14C]aminopyrine (AP). Inhibition of p38 kinase by SB-203580 led to a dose-dependent increase in AP uptake induced by carbachol, with maximal (threefold) effect at 10 μM SB-203580. Similarly, preincubation of parietal cells with C3 led to a twofold increase in AP uptake induced by carbachol. Thus carbachol induces a cascade of events in parietal cells that results in activation of p38 kinase through signaling pathways that are at least in part dependent on Rho activation and on the presence of extracellular Ca2+. p38 kinase appears to inhibit gastric acid secretion.


2006 ◽  
Vol 24 (2) ◽  
pp. 124-132 ◽  
Author(s):  
Renu N. Jain ◽  
Cynthia S. Brunkan ◽  
Catherine S. Chew ◽  
Linda C. Samuelson

Previous studies demonstrated that mice with a null mutation in the gene encoding the hormone gastrin have impaired gastric acid secretion. Hence, the aim of this study was to evaluate changes in the acid-secreting parietal cell in gastrin-deficient (GAS-KO) mice. Analysis of several transcripts encoding parietal cell proteins involved in gastric acid secretion showed reduced abundance in the GAS-KO stomach, including H+,K+-ATPase α- and β-subunits, KCNQ1 potassium channel, aquaporin-4 water channel, and creatine kinase B, which were reversed by gastrin infusion for 1 wk. Although mRNA and protein levels of LIM and SH3 domain-containing protein-1 (LASP-1) were not greatly changed in the mutant, there was a marked reduction in phosphorylation, consistent with its proposed role as a cAMP signal adaptor protein associated with acid secretion. A more comprehensive analysis of parietal cell gene expression in GAS-KO mice was performed using the Affymetrix U74AV2 chip with RNA from parietal cells purified by flow cytometry to >90%. Comparison of gene expression in GAS-KO and wild-type mice identified 47 transcripts that differed by greater than or equal to twofold, suggesting that gastrin affects parietal cell gene expression in a specific manner. The differentially expressed genes included several genes in signaling pathways, with a substantial number (20%) known to be target genes for Wnt and Myc.


2001 ◽  
Vol 280 (2) ◽  
pp. G308-G313 ◽  
Author(s):  
Shyamal Premaratne ◽  
Chun Xue ◽  
John M. McCarty ◽  
Muhammad Zaki ◽  
Robert W. McCuen ◽  
...  

Nitric oxide synthases (NOS) are enzymes that catalyze the generation of nitric oxide (NO) from l-arginine and require nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor. At least three isoforms of NOS have been identified: neuronal NOS (nNOS or NOS I), inducible NOS (iNOS or NOS II), and endothelial NOS (eNOS or NOS II). Recent studies implicate NO in the regulation of gastric acid secretion. The aim of the present study was to localize the cellular distribution and characterize the isoform of NOS present in oxyntic mucosa. Oxyntic mucosal segments from rat stomach were stained by the NADPH-diaphorase reaction and with isoform-specific NOS antibodies. The expression of NOS in isolated, highly enriched (>98%) rat parietal cells was examined by immunohistochemistry, Western blot analysis, and RT-PCR. In oxyntic mucosa, histochemical staining revealed NADPH-diaphorase and nNOS immunoreactivity in cells in the midportion of the glands, which were identified as parietal cells in hematoxylin and eosin-stained step sections. In isolated parietal cells, decisive evidence for nNOS expression was obtained by specific immunohistochemistry, Western blotting, and RT-PCR. Cloning and sequence analysis of the PCR product confirmed it to be nNOS (100% identity). Expression of nNOS in parietal cells suggests that endogenous NO, acting as an intracellular signaling molecule, may participate in the regulation of gastric acid secretion.


2015 ◽  
Vol 309 (4) ◽  
pp. C264-C270 ◽  
Author(s):  
Jianye Yuan ◽  
Wensheng Liu ◽  
Serhan Karvar ◽  
Susan S. Baker ◽  
Wenjun He ◽  
...  

Gastric acid secretion is mediated by the K+-dependent proton pump (H+,K+-ATPase), which requires a continuous supply of K+ at the luminal side of the apical membrane. Several K+ channels are implicated in gastric acid secretion. However, the identity of the K+ channel(s) responsible for apical K+ supply is still elusive. Our previous studies have shown the translocation of KCNJ15 from cytoplasmic vesicles to the apical membrane on stimulation, indicating its involvement in gastric acid secretion. In this study, the stimulation associated trafficking of KCNJ15 was observed in a more native context with a live cell imaging system. KCNJ15 molecules in resting live cells were scattered in cytoplasm but exhibited apical localization after stimulation. Furthermore, knocking down KCNJ15 expression with a short hairpin RNA adenoviral construct abolished histamine-stimulated acid secretion in rabbit primary parietal cells. Moreover, KCNJ15, like H+,K+-ATPase, was detected in all of the parietal cells by immunofluorescence staining, whereas only about half of the parietal cells were positive for KCNQ1 under the same condition. Consistently, the endogenous protein levels of KCNJ15, analyzed by Western blotting, were higher than those of KCNQ1 in the gastric mucosa of human, mouse, and rabbit. These results provide evidence for a major role of KCNJ15 in apical K+ supply during stimulated acid secretion.


1990 ◽  
Vol 259 (1) ◽  
pp. G41-G47 ◽  
Author(s):  
D. J. Stechschulte ◽  
D. C. Morris ◽  
R. L. Jilka ◽  
D. J. Stechschulte ◽  
K. N. Dileepan

Gastric acid secretion in normal (+/+) C57B1/6J mice and congeneic, mast cell-deficient (mi/mi) C57B1/6J mice was examined. The mast cell-deficient animals had approximately 50% of the normal quantity of gastric histamine and a blunted basal acid level and secretory response. These observations were noted despite the presence of parietal cells, which were normal in number and morphology. The H2-antagonist ranitidine inhibited basal acid secretion in both groups of animals. Exogenous histamine induced a significant secretory response in normal and mast cell-deficient groups, but only the secretory response in normal animals could be blocked by the H2-antagonist. Treatment of mast cell-deficient animals with histamine for seven consecutive days before stimulation did not restore the histamine response to the normal (+/+) levels. The normal animals demonstrated an acid secretory response to pentagastrin. Mast cell-deficient mice also responded to pentagastrin, but the response was less than that observed in the normal animals, and a significant difference was not evident in all experiments. Furthermore, simultaneous injection of mast cell-deficient animals with histamine and pentagastrin did not restore pentagastrin responsiveness to normal levels, although the histamine concentration used was sufficient to raise acid secretion to basal levels of normal mice. These results support the conclusion that non-mast cell histamine only partially contributes to basal gastric acid secretion and is insufficient to facilitate full parietal cell responsiveness. Furthermore, pentagastrin requires the presence of mast cells to elicit a maximal secretory response but can use non-mast cell histamine to activate the parietal cells for acid secretion.


Sign in / Sign up

Export Citation Format

Share Document