Identification of a basolateral Cl−/HCO 3 − exchanger specific to gastric parietal cells

2003 ◽  
Vol 284 (6) ◽  
pp. G1093-G1103 ◽  
Author(s):  
Snezana Petrovic ◽  
Xie Ju ◽  
Sharon Barone ◽  
Ursula Seidler ◽  
Seth L. Alper ◽  
...  

The basolateral Cl−/HCO[Formula: see text] exchanger in parietal cells plays an essential role in gastric acid secretion mediated via the apical gastric H+-K+-ATPase. Here, we report the identification of a new Cl−/HCO[Formula: see text]exchanger, which shows exclusive expression in mouse stomach and kidney, with expression in the stomach limited to the basolateral membrane of gastric parietal cells. Tissue distribution studies by RT-PCR and Northern hybridizations demonstrated the exclusive expression of this transporter, also known as SLC26A7, to stomach and kidney, with the stomach expression significantly more abundant. No expression was detected in the intestine. Cellular distribution studies by RT-PCR and Northern hybridizations demonstrated predominant localization of SLC26A7 in gastric parietal cells. Immunofluorescence labeling localized this exchanger exclusively to the basolateral membrane of gastric parietal cells, and functional studies in oocytes indicated that SLC26A7 is a DIDS-sensitive Cl−/HCO[Formula: see text] exchanger that is active in both acidic and alkaline pHi. On the basis of its unique expression pattern and function, we propose that SLC26A7 is a basolateral Cl−/HCO[Formula: see text] exchanger in gastric parietal cells and plays a major role in gastric acid secretion.

2001 ◽  
Vol 280 (2) ◽  
pp. G308-G313 ◽  
Author(s):  
Shyamal Premaratne ◽  
Chun Xue ◽  
John M. McCarty ◽  
Muhammad Zaki ◽  
Robert W. McCuen ◽  
...  

Nitric oxide synthases (NOS) are enzymes that catalyze the generation of nitric oxide (NO) from l-arginine and require nicotinamide adenine dinucleotide phosphate (NADPH) as a cofactor. At least three isoforms of NOS have been identified: neuronal NOS (nNOS or NOS I), inducible NOS (iNOS or NOS II), and endothelial NOS (eNOS or NOS II). Recent studies implicate NO in the regulation of gastric acid secretion. The aim of the present study was to localize the cellular distribution and characterize the isoform of NOS present in oxyntic mucosa. Oxyntic mucosal segments from rat stomach were stained by the NADPH-diaphorase reaction and with isoform-specific NOS antibodies. The expression of NOS in isolated, highly enriched (>98%) rat parietal cells was examined by immunohistochemistry, Western blot analysis, and RT-PCR. In oxyntic mucosa, histochemical staining revealed NADPH-diaphorase and nNOS immunoreactivity in cells in the midportion of the glands, which were identified as parietal cells in hematoxylin and eosin-stained step sections. In isolated parietal cells, decisive evidence for nNOS expression was obtained by specific immunohistochemistry, Western blotting, and RT-PCR. Cloning and sequence analysis of the PCR product confirmed it to be nNOS (100% identity). Expression of nNOS in parietal cells suggests that endogenous NO, acting as an intracellular signaling molecule, may participate in the regulation of gastric acid secretion.


2005 ◽  
Vol 169 (1) ◽  
pp. 21-28 ◽  
Author(s):  
Atsushi Tamura ◽  
Shojiro Kikuchi ◽  
Masaki Hata ◽  
Tatsuya Katsuno ◽  
Takeshi Matsui ◽  
...  

Loss of gastric acid secretion is pathologically known as achlorhydria. Acid-secreting parietal cells are characterized by abundant expression of ezrin (Vil2), one of ezrin/radixin/moesin proteins, which generally cross-link actin filaments with plasma membrane proteins. Here, we show the direct in vivo involvement of ezrin in gastric acid secretion. Ezrin knockout (Vil2−/−) mice did not survive >1.5 wk after birth, making difficult to examine gastric acid secretion. We then generated ezrin knockdown (Vil2kd/kd) mice by introducing a neomycin resistance cassette between exons 2 and 3. Vil2kd/kd mice born at the expected Mendelian ratio exhibited growth retardation and a high mortality. Approximately 7% of Vil2kd/kd mice survived to adulthood. Ezrin protein levels in Vil2kd/kd stomachs decreased to <5% of the wild-type levels without compensatory up-regulation of radixin or moesin. Adult Vil2kd/kd mice suffered from severe achlorhydria. Immunofluorescence and electron microscopy revealed that this achlorhydria was caused by defects in the formation/expansion of canalicular apical membranes in gastric parietal cells.


2008 ◽  
Vol 105 (46) ◽  
pp. 17955-17960 ◽  
Author(s):  
Jie Xu ◽  
Penghong Song ◽  
Marian L. Miller ◽  
Frank Borgese ◽  
Sharon Barone ◽  
...  

Slc26a9 is a recently identified anion transporter that is abundantly expressed in gastric epithelial cells. To study its role in stomach physiology, gene targeting was used to prepare mice lacking Slc26a9. Homozygous mutant (Slc26a9−/−) mice appeared healthy and displayed normal growth. Slc26a9 deletion resulted in the loss of gastric acid secretion and a moderate reduction in the number of parietal cells in mutant mice at 5 weeks of age. Immunofluorescence labeling detected the H-K-ATPase exclusively on the apical pole of gastric parietal cells in Slc26a9−/− mice, in contrast to the predominant cytoplasmic localization in Slc26a9+/+ mice. Light microscopy indicated that gastric glands were dilated, and electron micrographs displayed a distinct and striking absence of tubulovesicles in parietal cells and reductions in the numbers of parietal and zymogen cells in Slc26a9−/− stomach. Expression studies indicated that Slc26a9 can function as a chloride conductive pathway in oocytes as well as a Cl−/HCO3− exchanger in cultured cells, and localization studies in parietal cells detected its presence in tubulovesicles. We propose that Slc26a9 plays an essential role in gastric acid secretion via effects on the viability of tubulovesicles/secretory canaliculi and by regulating chloride secretion in parietal cells.


2000 ◽  
Vol 278 (1) ◽  
pp. G24-G31 ◽  
Author(s):  
N. Pausawasdi ◽  
S. Ramamoorthy ◽  
V. Stepan ◽  
J. del Valle ◽  
A. Todisco

We examined the regulation and functional role of p38 kinase in gastric acid secretion. p38 kinase was immunoprecipitated from cell lysates of highly purified gastric parietal cells in primary culture, and its activity was quantitated by in vitro kinase assay. Carbachol effects were dose- and time-dependent, with a maximal 10-fold stimulatory effect detected after 30 min of incubation. SB-203580, a highly selective inhibitor of p38 kinase, blocked carbachol induction of p38 kinase activity, with maximal inhibition at 10 μM. Stimulation by carbachol was unaffected by preincubation of parietal cells with the intracellular Ca2+chelator BAPTA-AM, but incubation of cells in Ca2+-free medium led to a 50% inhibition of carbachol induction of p38 kinase activity. Because some of the effects of carbachol are mediated by the small GTP-binding protein Rho, we examined the role of Rho in carbachol induction of p38 kinase activity. We tested the effect of exoenzyme C3 from Clostridium botulinum (C3), a toxin known to ADP-ribosylate and specifically inactivate Rho. C3 led to complete ADP-ribosylation of Rho, and it inhibited carbachol induction of p38 kinase by 50%. We then tested the effect of SB-203580 and C3 on carbachol-stimulated uptake of [14C]aminopyrine (AP). Inhibition of p38 kinase by SB-203580 led to a dose-dependent increase in AP uptake induced by carbachol, with maximal (threefold) effect at 10 μM SB-203580. Similarly, preincubation of parietal cells with C3 led to a twofold increase in AP uptake induced by carbachol. Thus carbachol induces a cascade of events in parietal cells that results in activation of p38 kinase through signaling pathways that are at least in part dependent on Rho activation and on the presence of extracellular Ca2+. p38 kinase appears to inhibit gastric acid secretion.


2006 ◽  
Vol 24 (2) ◽  
pp. 124-132 ◽  
Author(s):  
Renu N. Jain ◽  
Cynthia S. Brunkan ◽  
Catherine S. Chew ◽  
Linda C. Samuelson

Previous studies demonstrated that mice with a null mutation in the gene encoding the hormone gastrin have impaired gastric acid secretion. Hence, the aim of this study was to evaluate changes in the acid-secreting parietal cell in gastrin-deficient (GAS-KO) mice. Analysis of several transcripts encoding parietal cell proteins involved in gastric acid secretion showed reduced abundance in the GAS-KO stomach, including H+,K+-ATPase α- and β-subunits, KCNQ1 potassium channel, aquaporin-4 water channel, and creatine kinase B, which were reversed by gastrin infusion for 1 wk. Although mRNA and protein levels of LIM and SH3 domain-containing protein-1 (LASP-1) were not greatly changed in the mutant, there was a marked reduction in phosphorylation, consistent with its proposed role as a cAMP signal adaptor protein associated with acid secretion. A more comprehensive analysis of parietal cell gene expression in GAS-KO mice was performed using the Affymetrix U74AV2 chip with RNA from parietal cells purified by flow cytometry to >90%. Comparison of gene expression in GAS-KO and wild-type mice identified 47 transcripts that differed by greater than or equal to twofold, suggesting that gastrin affects parietal cell gene expression in a specific manner. The differentially expressed genes included several genes in signaling pathways, with a substantial number (20%) known to be target genes for Wnt and Myc.


2003 ◽  
Vol 14 (3) ◽  
pp. 1097-1108 ◽  
Author(s):  
Rihong Zhou ◽  
Zhen Guo ◽  
Charles Watson ◽  
Emily Chen ◽  
Rong Kong ◽  
...  

Actin cytoskeleton plays an important role in the establishment of epithelial cell polarity. Cdc42, a member of Rho GTPase family, modulates actin dynamics via its regulators, such as IQGAP proteins. Gastric parietal cells are polarized epithelial cells in which regulated acid secretion occurs in the apical membrane upon stimulation. We have previously shown that actin isoforms are polarized to different membrane domains and that the integrity of the actin cytoskeleton is essential for acid secretion. Herein, we show that Cdc42 is preferentially distributed to the apical membrane of gastric parietal cells. In addition, we revealed that two Cdc42 regulators, IQGAP1 and IQGAP2, are present in gastric parietal cells. Interestingly, IQGAP2 is polarized to the apical membrane of the parietal cells, whereas IQGAP1 is mainly distributed to the basolateral membrane. An IQGAP peptide that competes with full-length IQGAP proteins for Cdc42-binding in vitro also inhibits acid secretion in streptolysin-O-permeabilized gastric glands. Furthermore, this peptide disrupts the association of IQGAP and Cdc42 with the apical actin cytoskeleton and prevents the apical membrane remodeling upon stimulation. We propose that IQGAP2 forms a link that associates Cdc42 with the apical cytoskeleton and thus allows for activation of polarized secretion in gastric parietal cells.


2000 ◽  
Vol 279 (2) ◽  
pp. G448-G453 ◽  
Author(s):  
Kasper S. Wang ◽  
Alex R. Komar ◽  
Tonghui Ma ◽  
Ferda Filiz ◽  
Jeff McLeroy ◽  
...  

The aquaporin-4 (AQP4) water channel has been proposed to play a role in gastric acid secretion. Immunocytochemistry using anti-AQP4 antibodies showed strong AQP4 protein expression at the basolateral membrane of gastric parietal cells in wild-type (+/+) mice. AQP4 involvement in gastric acid secretion was studied using transgenic null (−/−) mice deficient in AQP4 protein. −/− Mice had grossly normal growth and appearance and showed no differences in gastric morphology by light microscopy. Gastric acid secretion was measured in anesthetized mice in which the stomach was luminally perfused (0.3 ml/min) with 0.9% NaCl containing [14C]polyethylene glycol ([14C]PEG) as a volume marker. Collected effluent was assayed for titratable acid content and [14C]PEG radioactivity. After 45-min baseline perfusion, acid secretion was stimulated by pentagastrin (200 μg · kg−1· h−1 iv) for 1 h or histamine (0.23 mg/kg iv) + intraluminal carbachol (20 mg/l). Baseline gastric acid secretion (means ± SE, n = 25) was 0.06 ± 0.03 and 0.03 ± 0.02 μeq/15 min in +/+ and −/− mice, respectively. Pentagastrin-stimulated acid secretion was 0.59 ± 0.14 and 0.70 ± 0.15 μeq/15 min in +/+ and −/− mice, respectively. Histamine plus carbachol-stimulated acid secretion was 7.0 ± 1.9 and 8.0 ± 1.8 μeq/15 min in +/+ and −/− mice, respectively. In addition, AQP4 deletion did not affect gastric fluid secretion, gastric pH, or fasting serum gastrin concentrations. These results provide direct evidence against a role of AQP4 in gastric acid secretion.


Sign in / Sign up

Export Citation Format

Share Document