scholarly journals A preformed, topologically stable replication fork. Characterization of leading strand DNA synthesis catalyzed by T7 DNA polymerase and T7 gene 4 protein.

1983 ◽  
Vol 258 (18) ◽  
pp. 11185-11196 ◽  
Author(s):  
R L Lechner ◽  
C C Richardson
2018 ◽  
Author(s):  
Sarina Y. Porcella ◽  
Natasha C. Koussa ◽  
Colin P. Tang ◽  
Daphne N. Kramer ◽  
Priyanka Srivastava ◽  
...  

AbstractDuring eukaryotic DNA replication, DNA polymerase alpha/primase (Pol α) initiates synthesis on both the leading and lagging strands. It is unknown whether leading- and lagging-strand priming are mechanistically identical, and whether Pol α associates processively or distributively with the replisome. Here, we titrate cellular levels of Pol α in S. cerevisiae and analyze Okazaki fragments to study both replication initiation and ongoing lagging-strand synthesis in vivo. We observe that both Okazaki fragment initiation and the productive firing of replication origins are sensitive to Pol α abundance, and that both processes are disrupted at similar Pol α concentrations. When the replisome adaptor protein Ctf4 is absent or cannot interact with Pol α, lagging-strand initiation is impaired at Pol α concentrations that still support normal origin firing. Additionally, we observe that activation of the checkpoint becomes essential for viability upon severe depletion of Pol α. Using strains in which the Pol α-Ctf4 interaction is disrupted, we demonstrate that this checkpoint requirement is not solely caused by reduced lagging-strand priming. Our results suggest that Pol α recruitment for replication initiation and ongoing lagging-strand priming are distinctly sensitive to the presence of Ctf4. We propose that the global changes we observe in Okazaki fragment length and origin firing efficiency are consistent with distributive association of Pol α at the replication fork, at least when Pol α is limiting.Author summaryHalf of each eukaryotic genome is replicated continuously as the leading strand, while the other half is synthesized discontinuously as Okazaki fragments on the lagging strand. The bulk of DNA replication is completed by DNA polymerases ε and δ on the leading and lagging strand respectively, while synthesis on each strand is initiated by DNA polymerase α-primase (Pol α). Using the model eukaryote S. cerevisiae, we modulate cellular levels of Pol α and interrogate the impact of this perturbation on both replication initiation on DNA synthesis and cellular viability. We observe that Pol α can associate dynamically at the replication fork for initiation on both strands. Although the initiation of both strands is widely thought to be mechanistically similar, we determine that Ctf4, a hub that connects proteins to the replication fork, stimulates lagging-strand priming to a greater extent than leading-strand initiation. We also find that decreased leading-strand initiation results in a checkpoint response that is necessary for viability when Pol α is limiting. Because the DNA replication machinery is highly conserved from budding yeast to humans, this research provides insights into how DNA replication is accomplished throughout eukaryotes.


2016 ◽  
Vol 113 (21) ◽  
pp. 5916-5921 ◽  
Author(s):  
Alfredo J. Hernandez ◽  
Seung-Joo Lee ◽  
Charles C. Richardson

DNA replication occurs semidiscontinuously due to the antiparallel DNA strands and polarity of enzymatic DNA synthesis. Although the leading strand is synthesized continuously, the lagging strand is synthesized in small segments designated Okazaki fragments. Lagging-strand synthesis is a complex event requiring repeated cycles of RNA primer synthesis, transfer to the lagging-strand polymerase, and extension effected by cooperation between DNA primase and the lagging-strand polymerase. We examined events controlling Okazaki fragment initiation using the bacteriophage T7 replication system. Primer utilization by T7 DNA polymerase is slower than primer formation. Slow primer release from DNA primase allows the polymerase to engage the complex and is followed by a slow primer handoff step. The T7 single-stranded DNA binding protein increases primer formation and extension efficiency but promotes limited rounds of primer extension. We present a model describing Okazaki fragment initiation, the regulation of fragment length, and their implications for coordinated leading- and lagging-strand DNA synthesis.


2017 ◽  
Vol 114 (16) ◽  
pp. 4141-4146 ◽  
Author(s):  
Jin Chuan Zhou ◽  
Agnieszka Janska ◽  
Panchali Goswami ◽  
Ludovic Renault ◽  
Ferdos Abid Ali ◽  
...  

The replisome unwinds and synthesizes DNA for genome duplication. In eukaryotes, the Cdc45–MCM–GINS (CMG) helicase and the leading-strand polymerase, Pol epsilon, form a stable assembly. The mechanism for coupling DNA unwinding with synthesis is starting to be elucidated, however the architecture and dynamics of the replication fork remain only partially understood, preventing a molecular understanding of chromosome replication. To address this issue, we conducted a systematic single-particle EM study on multiple permutations of the reconstituted CMG–Pol epsilon assembly. Pol epsilon contains two flexibly tethered lobes. The noncatalytic lobe is anchored to the motor of the helicase, whereas the polymerization domain extends toward the side of the helicase. We observe two alternate configurations of the DNA synthesis domain in the CMG-bound Pol epsilon. We propose that this conformational switch might control DNA template engagement and release, modulating replisome progression.


2011 ◽  
Vol 108 (23) ◽  
pp. 9372-9377 ◽  
Author(s):  
H. Zhang ◽  
S.-J. Lee ◽  
B. Zhu ◽  
N. Q. Tran ◽  
S. Tabor ◽  
...  

1997 ◽  
Vol 272 (21) ◽  
pp. 13945-13954 ◽  
Author(s):  
Marila Cordeiro-Stone ◽  
Liubov S. Zaritskaya ◽  
Laura K. Price ◽  
William K. Kaufmann

1998 ◽  
Vol 332 (2) ◽  
pp. 557-563 ◽  
Author(s):  
Hirokazu SETO ◽  
Masami HATANAKA ◽  
Seisuke KIMURA ◽  
Masahiko OSHIGE ◽  
Yuri TSUYA ◽  
...  

A DNA polymerase from cauliflower (Brassica oleracea var. botrytis) inflorescence has been purified to near homogeneity through five successive column chromatographies, and temporally designated cauliflower polymerase 1. Cauliflower polymerase 1 is a monopolypeptide with a molecular mass of 100 kDa. The enzyme efficiently uses synthetic DNA homopolymers and moderately activated DNA and a synthetic RNA homopolymer as template-primers. The enzyme is strongly sensitive to dideoxythymidine triphosphate and N-ethylmaleimide, but it is insensitive to aphidicolin. It was stimulated with 250 mM KCl. Its mode of DNA synthesis is high-processive with or without proliferating-cell nuclear antigen. A 3´ → 5´ exonuclease activity is associated with cauliflower polymerase 1. The enzyme is clearly different from cauliflower mitochondrial polymerase and does not resemble the four different types of wheat DNA polymerase, designated wheat DNA polymerases A, B, CI and CII. In the present paper the role of the enzyme in plant DNA synthesis is discussed.


Sign in / Sign up

Export Citation Format

Share Document