bacteriophage t7
Recently Published Documents


TOTAL DOCUMENTS

836
(FIVE YEARS 30)

H-INDEX

70
(FIVE YEARS 3)

Author(s):  
Chutikarn Chitboonthavisuk ◽  
Chun Huai Luo ◽  
Phil Huss ◽  
Mikayla Fernholz ◽  
Srivatsan Raman
Keyword(s):  

2021 ◽  
Author(s):  
Diana Gabriela Calvopina Chavez ◽  
Mikaela Anne Gardner ◽  
Joel S Griffitts

The bacteriophage T7 expression system is one of the most prominent transcription systems used in biotechnology and molecular-level research. However, T7 RNA polymerase is prone to read-through transcription due to its high processivity. As a consequence, enforcing efficient transcriptional termination is difficult. The termination hairpin found natively in the T7 genome is adapted to be inefficient, exhibiting 62% termination efficiency in vivo and even lower efficiency in vitro. In this study, we engineered a series of sequences that outperform the efficiency of the native terminator hairpin. By embedding a previously discovered 8-nucleotide T7 polymerase pause sequence within a synthetic hairpin sequence, we observed in vivo termination efficiency of 91%; by joining two short sequences into a tandem 2-hairpin structure, termination efficiency was increased to 98% in vivo and 91% in vitro. This study also tests the ability of these engineered sequences to terminate transcription of the Escherichia coli RNA polymerase. Two out of three of the most successful T7 polymerase terminators also facilitated termination of the bacterial polymerase with around 99% efficiency.


Author(s):  
Alex B. Benedict ◽  
Joshua D. Chamberlain ◽  
Diana G. Calvopina ◽  
Joel S. Griffitts

Abstract Background The bacteriophage T7 gene 10 ribosome binding site (g10RBS) has long been used for robust expression of recombinant proteins in Escherichia coli. This RBS consists of a Shine–Dalgarno (SD) sequence augmented by an upstream translational “enhancer” (Enh) element, supporting protein production at many times the level seen with simple synthetic SD-containing sequences. The objective of this study was to dissect the g10RBS to identify simpler derivatives that exhibit much of the original translation efficiency. Methods and results Twenty derivatives of g10RBS were tested using multiple promoter/reporter gene contexts. We have identified one derivative (which we call “CON_G”) that maintains 100% activity in E. coli and is 33% shorter. Further minimization of CON_G results in variants that lose only modest amounts of activity. Certain nucleotide substitutions in the spacer region between the SD sequence and initiation codon show strong decreases in translation. When testing these 20 derivatives in the alphaproteobacterium Agrobacterium fabrum, most supported strong reporter protein expression that was not dependent on the Enh. Conclusions The g10RBS derivatives tested in this study display a range of observed activity, including a minimized version (CON_G) that retains 100% activity in E. coli while being 33% shorter. This high activity is evident in two different promoter/reporter sequence contexts. The array of RBS sequences presented here may be useful to researchers in need of fine-tuned expression of recombinant proteins of interest.


2021 ◽  
Vol 118 (37) ◽  
pp. e2102003118
Author(s):  
Wenyuan Chen ◽  
Hao Xiao ◽  
Li Wang ◽  
Xurong Wang ◽  
Zhixue Tan ◽  
...  

Many tailed bacteriophages assemble ejection proteins and a portal–tail complex at a unique vertex of the capsid. The ejection proteins form a transenvelope channel extending the portal–tail channel for the delivery of genomic DNA in cell infection. Here, we report the structure of the mature bacteriophage T7, including the ejection proteins, as well as the structures of the full and empty T7 particles in complex with their cell receptor lipopolysaccharide. Our near–atomic-resolution reconstruction shows that the ejection proteins in the mature T7 assemble into a core, which comprises a fourfold gene product 16 (gp16) ring, an eightfold gp15 ring, and a putative eightfold gp14 ring. The gp15 and gp16 are mainly composed of helix bundles, and gp16 harbors a lytic transglycosylase domain for degrading the bacterial peptidoglycan layer. When interacting with the lipopolysaccharide, the T7 tail nozzle opens. Six copies of gp14 anchor to the tail nozzle, extending the nozzle across the lipopolysaccharide lipid bilayer. The structures of gp15 and gp16 in the mature T7 suggest that they should undergo remarkable conformational changes to form the transenvelope channel. Hydrophobic α-helices were observed in gp16 but not in gp15, suggesting that gp15 forms the channel in the hydrophilic periplasm and gp16 forms the channel in the cytoplasmic membrane.


2021 ◽  
Author(s):  
Chutikarn Chitboonthavisuk ◽  
Phil Thaddeus Huss ◽  
Huai Luo Chun ◽  
Mikayla Fernholz ◽  
Srivatsan Raman

Transcriptional repressors play an important role in regulating phage genomes. Here, we examined how synthetic regulation based on repressors can be to create a dynamic, controllable infectivity switch in bacteriophage T7. We engineered T7 by replacing a large region of the early phage genome with combinations of ligand-responsive promoters and ribosome binding sites (RBS) designed to control the phage RNA polymerase. Phages with the engineered switch showed virulence comparable to wildtype when not repressed, indicating the phage can be engineered without a loss of fitness. When repressed, the most effective switch used a TetR promoter and a weak RBS, resulting in a two-fold increase in latent period (time to lyse host) and change in phage titer. Further, phage activity could be tuned by varying inducer concentrations. Our study provides a proof of concept for a simple circuit for user control over phage infectivity.


2021 ◽  
Vol 118 (34) ◽  
pp. e2026719118
Author(s):  
Mar Pérez-Ruiz ◽  
Mar Pulido-Cid ◽  
Juan Román Luque-Ortega ◽  
José María Valpuesta ◽  
Ana Cuervo ◽  
...  

In most bacteriophages, genome transport across bacterial envelopes is carried out by the tail machinery. In viruses of the Podoviridae family, in which the tail is not long enough to traverse the bacterial wall, it has been postulated that viral core proteins assembled inside the viral head are translocated and reassembled into a tube within the periplasm that extends the tail channel. Bacteriophage T7 infects Escherichia coli, and despite extensive studies, the precise mechanism by which its genome is translocated remains unknown. Using cryo-electron microscopy, we have resolved the structure of two different assemblies of the T7 DNA translocation complex composed of the core proteins gp15 and gp16. Gp15 alone forms a partially folded hexamer, which is further assembled upon interaction with gp16 into a tubular structure, forming a channel that could allow DNA passage. The structure of the gp15–gp16 complex also shows the location within gp16 of a canonical transglycosylase motif involved in the degradation of the bacterial peptidoglycan layer. This complex docks well in the tail extension structure found in the periplasm of T7-infected bacteria and matches the sixfold symmetry of the phage tail. In such cases, gp15 and gp16 that are initially present in the T7 capsid eightfold-symmetric core would change their oligomeric state upon reassembly in the periplasm. Altogether, these results allow us to propose a model for the assembly of the core translocation complex in the periplasm, which furthers understanding of the molecular mechanism involved in the release of T7 viral DNA into the bacterial cytoplasm.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hai Xu ◽  
Xi Bao ◽  
Weiming Hong ◽  
Anping Wang ◽  
Kaimin Wang ◽  
...  

Bacteriophage T7 gene 17.5 coding for the only known holin is one of the components of its lysis system, but the holin activity in T7 is more complex than a single gene, and evidence points to the existence of additional T7 genes with holin activity. In this study, a T7 phage with a gene 17.5 deletion (T7-△holin) was rescued and its biological characteristics and effect on cell lysis were determined. Furthermore, the genomic evolution of mutant phage T7-△holin during serial passage was assessed by whole-genome sequencing analysis. It was observed that deletion of gene 17.5 from phage T7 delays lysis time and enlarges the phage burst size; however, this biological characteristic recovered to normal lysis levels during serial passage. Scanning electron microscopy showed that the two opposite ends of E. coli BL21 cells swell post-T7-△holin infection rather than drilling holes on cell membrane when compared with T7 wild-type infection. No visible progeny phage particle accumulation was observed inside the E. coli BL21 cells by transmission electron microscopy. Following serial passage of T7-△holin from the 1st to 20th generations, the mRNA levels of gene 3.5 and gene 19.5 were upregulated and several mutation sites were discovered, especially two missense mutations in gene 19.5, which indicate a potential contribution to the evolution of the T7-△holin. Although the burst size of T7-△holin increased, high titer cultivation of T7-△holin was not achieved by optimizing the culture process. Accordingly, these results suggest that gene 19.5 is a potential lysis-related component that needs to be studied further and that the T7-△holin strain with its gene 17.5 deletion is not adequate to establish the high-titer phage cultivation process.


2021 ◽  
Vol 120 (3) ◽  
pp. 32a-33a
Author(s):  
Shikai Jin ◽  
Carlos A. Bueno Basurco ◽  
Wei Lu ◽  
Yang Gao ◽  
Peter G. Wolynes

Sign in / Sign up

Export Citation Format

Share Document