scholarly journals Both near ultraviolet radiation and the oxidizing agent hydrogen peroxide induce a 32-kDa stress protein in normal human skin fibroblasts.

1987 ◽  
Vol 262 (30) ◽  
pp. 14821-14825
Author(s):  
S M Keyse ◽  
R M Tyrrell
1984 ◽  
Vol 12 (2) ◽  
pp. 89-97
Author(s):  
Graham R. Elliott ◽  
H.E. Amos ◽  
James W. Bridges

The rate of growth of normal human skin fibroblasts was inhibited in a dose related, reversible, fashion by practolol (N-4-(2-hydroxy)-3 (1-methyl)-aminopropoxyphenylacetamine) (ID50 1.35 ± 0.14 x 10-3M), propranolol (1-(isopropylamino)-3(1-naphthyl-oxy)-2-propranolol) (ID50 0.145 ± 0.02 x 10-3M) and paracetamol (N-(4-hydroxyphenyl) acetamide) (ID50 0.85 ± 0.2 x 10-3M). Skin fibroblasts isolated from a psoriasis patient were more sensitive towards practolol (ID50 0.48 ± 0.14 x 10-3M) and propranolol (ID50 0.032 ± 0.002 x 10-3M), but less sensitive towards paracetamol (ID50 1.3 ± 0.07 x 10-3M). In vitro generated metabolites of practolol, using normal or Arochlor 1254-pretreated hamster liver preparations, and structural analogues of practolol had no effect upon the growth of either cell type.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3009 ◽  
Author(s):  
Małgorzata Kikowska ◽  
Małgorzata Chmielewska ◽  
Agata Włodarczyk ◽  
Elżbieta Studzińska-Sroka ◽  
Jerzy Żuchowski ◽  
...  

The effect of the well-characterized callus extract of Chaenomeles japonica on viability, morphology, and proliferation of normal human skin fibroblasts was investigated. The phytochemical analysis was performed using the ultra-high performance liquid chromatography method. The total phenolic, phenolic acid, and flavonoid contents were determined spectrophotometrically. The antioxidant activity was investigated using the DPPH (1,1-Diphenyl-1-picrylhydrazyl Radical Scavenging), FRAP (Ferric Reducing Antioxidant Power), and CUPRAC (CUPric Reducing Antioxidant Capacity) assays. The callus growth index during passages was high as well as the content of pentacyclic triterpenoids. The microscopic observations of the fibroblast viability, morphology and the evaluation of the proliferation ratio (xCELLigence system) proved that the influence of callus extract on the fibroblasts was dose-dependent. The evaluated level of fibroblasts proliferation rate after 72 h of incubation with callus extract at concentration 12.5 µg L−1 was the highest compared to all the analyzed ligands. Moreover, callus extract administrated for 72 h caused a significant increase in the proliferation rate in comparison with the control group (5.7 ± 0.1 vs. 4.4 ± 0.9; p < 0.01). The preliminary studies carried out may suggest that the callus extract rich in triterpenoids may be a potential source of cosmetic ingredients with a beneficial effect on human skin.


Sign in / Sign up

Export Citation Format

Share Document