scholarly journals The role of high density lipoproteins in rat adrenal cholesterol metabolism and steroidogenesis.

1980 ◽  
Vol 255 (22) ◽  
pp. 10875-10883 ◽  
Author(s):  
J.T. Gwynne ◽  
B. Hess
2020 ◽  
Vol 117 (19) ◽  
pp. 10476-10483 ◽  
Author(s):  
Cuiwen He ◽  
Haibo Jiang ◽  
Wenxin Song ◽  
Howard Riezman ◽  
Peter Tontonoz ◽  
...  

Cholesterol-laden macrophage foam cells are a hallmark of atherosclerosis. For that reason, cholesterol metabolism in macrophages has attracted considerable scrutiny, particularly the mechanisms by which macrophages unload surplus cholesterol (a process referred to as “cholesterol efflux”). Many studies of cholesterol efflux in macrophages have focused on the role of ABC transporters in moving cholesterol onto high-density lipoproteins (HDLs), but other mechanisms for cholesterol efflux likely exist. We hypothesized that macrophages have the capacity to unload cholesterol directly onto adjacent cells. To test this hypothesis, we used methyl-β-cyclodextrin (MβCD) to load mouse peritoneal macrophages with [13C]cholesterol. We then plated the macrophages (in the absence of serum or HDL) onto smooth muscle cells (SMCs) that had been metabolically labeled with [15N]choline. After incubating the cells overnight in the absence of HDL or serum, we visualized 13C and 15N distribution by nanoscale secondary ion mass spectrometry (NanoSIMS). We observed substantial 13C enrichment in SMCs that were adjacent to [13C]cholesterol-loaded macrophages—including in cytosolic lipid droplets of SMCs. In follow-up studies, we depleted “accessible cholesterol” from the plasma membrane of [13C]cholesterol-loaded macrophages with MβCD before plating the macrophages onto the SMCs. After an overnight incubation, we again observed substantial 13C enrichment in the SMCs adjacent to macrophages. Thus, macrophages transfer cholesterol to adjacent cells in the absence of serum or HDL. We suspect that macrophages within tissues transfer cholesterol to adjacent cells, thereby contributing to the ability to unload surplus cholesterol.


Medicines ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 38
Author(s):  
Kyung-Hyun Cho

The composition and properties of apolipoprotein (apo) A-I and apoA-II in high-density lipoproteins (HDL) might be critical to SARS-CoV-2 infection via SR-BI and antiviral activity against COVID-19. HDL containing native apoA-I showed potent antiviral activity, while HDL containing glycated apoA-I or other apolipoproteins did not. However, there has been no report to elucidate the putative role of apoA-II in the antiviral activity of HDL.


2000 ◽  
pp. 79-83 ◽  
Author(s):  
W Abplanalp ◽  
MD Scheiber ◽  
K Moon ◽  
B Kessel ◽  
JH Liu ◽  
...  

Estrogens possess strong antioxidant effects in vitro, but in vivo studies in humans have yielded conflicting results. Little is known regarding factors that mediate the antioxidant effect of estrogens in vivo. In this study the potential role of high density lipoprotein (HDL) was examined. The antioxidant effect of estradiol-17beta (E2) added to low density lipoprotein (LDL) was lost after dialysis. In contrast, the antioxidant effect of E2 added to HDL was conserved after dialysis, suggesting that E2 was bound to HDL. Binding of E2 to LDL increased after esterification (especially to long chain fatty acids). In the presence of HDL, an increased amount of E2 was transferred to LDL. E2-17 ester was as potent as E2 in preventing LDL oxidation in vitro, but 3,17-diesters were not as effective (E2=E2-17 ester>E2-3 ester>E2-3,17 diester). This was also supported by experiments which showed that estrogens with masked 3-OH groups were not effective as antioxidants. These studies provide evidence that HDL could facilitate the antioxidant effect of E2 through initial association, esterification and eventual transfer of E2 esters to LDL. Therefore it is critical that HDL peroxidation parameters be evaluated in subjects receiving estrogen replacement therapy.


Sign in / Sign up

Export Citation Format

Share Document