scholarly journals Cultured macrophages transfer surplus cholesterol into adjacent cells in the absence of serum or high-density lipoproteins

2020 ◽  
Vol 117 (19) ◽  
pp. 10476-10483 ◽  
Author(s):  
Cuiwen He ◽  
Haibo Jiang ◽  
Wenxin Song ◽  
Howard Riezman ◽  
Peter Tontonoz ◽  
...  

Cholesterol-laden macrophage foam cells are a hallmark of atherosclerosis. For that reason, cholesterol metabolism in macrophages has attracted considerable scrutiny, particularly the mechanisms by which macrophages unload surplus cholesterol (a process referred to as “cholesterol efflux”). Many studies of cholesterol efflux in macrophages have focused on the role of ABC transporters in moving cholesterol onto high-density lipoproteins (HDLs), but other mechanisms for cholesterol efflux likely exist. We hypothesized that macrophages have the capacity to unload cholesterol directly onto adjacent cells. To test this hypothesis, we used methyl-β-cyclodextrin (MβCD) to load mouse peritoneal macrophages with [13C]cholesterol. We then plated the macrophages (in the absence of serum or HDL) onto smooth muscle cells (SMCs) that had been metabolically labeled with [15N]choline. After incubating the cells overnight in the absence of HDL or serum, we visualized 13C and 15N distribution by nanoscale secondary ion mass spectrometry (NanoSIMS). We observed substantial 13C enrichment in SMCs that were adjacent to [13C]cholesterol-loaded macrophages—including in cytosolic lipid droplets of SMCs. In follow-up studies, we depleted “accessible cholesterol” from the plasma membrane of [13C]cholesterol-loaded macrophages with MβCD before plating the macrophages onto the SMCs. After an overnight incubation, we again observed substantial 13C enrichment in the SMCs adjacent to macrophages. Thus, macrophages transfer cholesterol to adjacent cells in the absence of serum or HDL. We suspect that macrophages within tissues transfer cholesterol to adjacent cells, thereby contributing to the ability to unload surplus cholesterol.

2000 ◽  
Vol 152 (2) ◽  
pp. 347-357 ◽  
Author(s):  
Toru Takemura ◽  
Masakazu Sakai ◽  
Hirofumi Matsuda ◽  
Takeshi Matsumura ◽  
Takeshi Biwa ◽  
...  

2012 ◽  
Vol 449 (2) ◽  
pp. 531-542 ◽  
Author(s):  
Katrina A. Hadfield ◽  
David I. Pattison ◽  
Bronwyn E. Brown ◽  
Liming Hou ◽  
Kerry-Anne Rye ◽  
...  

Oxidative modification of HDLs (high-density lipoproteins) by MPO (myeloperoxidase) compromises its anti-atherogenic properties, which may contribute to the development of atherosclerosis. Although it has been established that HOCl (hypochlorous acid) produced by MPO targets apoA-I (apolipoprotein A-I), the major apolipoprotein of HDLs, the role of the other major oxidant generated by MPO, HOSCN (hypothiocyanous acid), in the generation of dysfunctional HDLs has not been examined. In the present study, we characterize the structural and functional modifications of lipid-free apoA-I and rHDL (reconstituted discoidal HDL) containing apoA-I complexed with phospholipid, induced by HOSCN and its decomposition product, OCN− (cyanate). Treatment of apoA-I with HOSCN resulted in the oxidation of tryptophan residues, whereas OCN− induced carbamylation of lysine residues to yield homocitrulline. Tryptophan residues were more readily oxidized on apoA-I contained in rHDLs. Exposure of lipid-free apoA-I to HOSCN and OCN− significantly reduced the extent of cholesterol efflux from cholesterol-loaded macrophages when compared with unmodified apoA-I. In contrast, HOSCN did not affect the anti-inflammatory properties of rHDL. The ability of HOSCN to impair apoA-I-mediated cholesterol efflux may contribute to the development of atherosclerosis, particularly in smokers who have high plasma levels of SCN− (thiocyanate).


Medicines ◽  
2021 ◽  
Vol 8 (7) ◽  
pp. 38
Author(s):  
Kyung-Hyun Cho

The composition and properties of apolipoprotein (apo) A-I and apoA-II in high-density lipoproteins (HDL) might be critical to SARS-CoV-2 infection via SR-BI and antiviral activity against COVID-19. HDL containing native apoA-I showed potent antiviral activity, while HDL containing glycated apoA-I or other apolipoproteins did not. However, there has been no report to elucidate the putative role of apoA-II in the antiviral activity of HDL.


Sign in / Sign up

Export Citation Format

Share Document