The roles of natural organic matter in chemical and microbial reduction of ferric iron

2003 ◽  
Vol 307 (1-3) ◽  
pp. 167-178 ◽  
Author(s):  
J CHEN ◽  
B GU ◽  
R ROYER ◽  
W BURGOS
2018 ◽  
Vol 224 ◽  
pp. 223-248 ◽  
Author(s):  
Christine Poggenburg ◽  
Robert Mikutta ◽  
Axel Schippers ◽  
Reiner Dohrmann ◽  
Georg Guggenberger

2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Edgardo I. Valenzuela ◽  
Alejandra Prieto-Davó ◽  
Nguyen E. López-Lozano ◽  
Alberto Hernández-Eligio ◽  
Leticia Vega-Alvarado ◽  
...  

ABSTRACT Wetlands constitute the main natural source of methane on Earth due to their high content of natural organic matter (NOM), but key drivers, such as electron acceptors, supporting methanotrophic activities in these habitats are poorly understood. We performed anoxic incubations using freshly collected sediment, along with water samples harvested from a tropical wetland, amended with 13C-methane (0.67 atm) to test the capacity of its microbial community to perform anaerobic oxidation of methane (AOM) linked to the reduction of the humic fraction of its NOM. Collected evidence demonstrates that electron-accepting functional groups (e.g., quinones) present in NOM fueled AOM by serving as a terminal electron acceptor. Indeed, while sulfate reduction was the predominant process, accounting for up to 42.5% of the AOM activities, the microbial reduction of NOM concomitantly occurred. Furthermore, enrichment of wetland sediment with external NOM provided a complementary electron-accepting capacity, of which reduction accounted for ∼100 nmol 13CH4 oxidized · cm−3 · day−1. Spectroscopic evidence showed that quinone moieties were heterogeneously distributed in the wetland sediment, and their reduction occurred during the course of AOM. Moreover, an enrichment derived from wetland sediments performing AOM linked to NOM reduction stoichiometrically oxidized methane coupled to the reduction of the humic analogue anthraquinone-2,6-disulfonate. Microbial populations potentially involved in AOM coupled to microbial reduction of NOM were dominated by divergent biota from putative AOM-associated archaea. We estimate that this microbial process potentially contributes to the suppression of up to 114 teragrams (Tg) of CH4 · year−1 in coastal wetlands and more than 1,300 Tg · year−1, considering the global wetland area. IMPORTANCE The identification of key processes governing methane emissions from natural systems is of major importance considering the global warming effects triggered by this greenhouse gas. Anaerobic oxidation of methane (AOM) coupled to the microbial reduction of distinct electron acceptors plays a pivotal role in mitigating methane emissions from ecosystems. Given their high organic content, wetlands constitute the largest natural source of atmospheric methane. Nevertheless, processes controlling methane emissions in these environments are poorly understood. Here, we provide tracer analysis with 13CH4 and spectroscopic evidence revealing that AOM linked to the microbial reduction of redox functional groups in natural organic matter (NOM) prevails in a tropical wetland. We suggest that microbial reduction of NOM may largely contribute to the suppression of methane emissions from tropical wetlands. This is a novel avenue within the carbon cycle in which slowly decaying NOM (e.g., humic fraction) in organotrophic environments fuels AOM by serving as a terminal electron acceptor.


2014 ◽  
Vol 11 (4) ◽  
pp. 6039-6067 ◽  
Author(s):  
K. Eusterhues ◽  
A. Hädrich ◽  
J. Neidhardt ◽  
K. Küsel ◽  
T. F. Keller ◽  
...  

Abstract. Ferrihydrite (Fh) is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter (OM) in the environment. This mineral-bound OM entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated the reactivity of 2-line Fh, Fh with adsorbed OM and Fh coprecipitated with OM towards microbial and abiotic reduction of Fe(III). As a surrogate for dissolved soil OM we used a water extract of a Podzol forest floor. Fh-OM associations with different OM-loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound OM. At similar OM-loadings, coprecipitated Fhs were more reactive than Fhs with adsorbed OM. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small OM loadings this led to even faster Fe reduction rates than found for pure Fh. The amount of mineral-bound OM also affected the formation of secondary minerals: goethite was only found after reduction of OM-free Fh and siderite was only detected when Fhs with relatively low amounts of mineral-bound OM were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited when blocked by OM. Consequently, mineral-bound OM shall be taken into account besides Fe(II) accumulation as a further widespread mechanism to slow down reductive dissolution.


2014 ◽  
Vol 11 (18) ◽  
pp. 4953-4966 ◽  
Author(s):  
K. Eusterhues ◽  
A. Hädrich ◽  
J. Neidhardt ◽  
K. Küsel ◽  
T. F. Keller ◽  
...  

Abstract. Ferrihydrite is a widespread poorly crystalline Fe oxide which becomes easily coated by natural organic matter in the environment. This mineral-bound organic matter entirely changes the mineral surface properties and therefore the reactivity of the original mineral. Here, we investigated 2-line ferrihydrite, ferrihydrite with adsorbed organic matter, and ferrihydrite coprecipitated with organic matter for microbial and abiotic reduction of Fe(III). Ferrihydrite-organic matter associations with different organic matter loadings were reduced either by Geobacter bremensis or abiotically by Na-dithionite. Both types of experiments showed decreasing initial Fe-reduction rates and decreasing degrees of reduction with increasing amounts of mineral-bound organic matter. At similar organic matter loadings, coprecipitated ferrihydrites were more reactive than ferrihydrites with adsorbed organic matter. The difference can be explained by the smaller crystal size and poor crystallinity of such coprecipitates. At small organic matter loadings the poor crystallinity of coprecipitates led to even faster Fe-reduction rates than found for pure ferrihydrite. The amount of mineral-bound organic matter also affected the formation of secondary minerals: goethite was only found after reduction of organic matter-free ferrihydrite and siderite was only detected when ferrihydrites with relatively low amounts of mineral-bound organic matter were reduced. We conclude that direct contact of G. bremensis to the Fe oxide mineral surface was inhibited by attached organic matter. Consequently, mineral-bound organic matter shall be taken into account as a factor in slowing down reductive dissolution.


2018 ◽  
Vol 5 (9) ◽  
pp. 571-577 ◽  
Author(s):  
E. Emilia Rios-Del Toro ◽  
Edgardo I. Valenzuela ◽  
J. Ernesto Ramírez ◽  
Nguyen E. López-Lozano ◽  
Francisco J. Cervantes

2012 ◽  
Vol 48 ◽  
pp. 81-89 ◽  
Author(s):  
Yumiko K. Henneberry ◽  
Tamara E.C. Kraus ◽  
Peter S. Nico ◽  
William R. Horwath

2020 ◽  
Author(s):  
Zhe Zhou ◽  
E. Marie Muehe ◽  
Elizabeth J. Tomaszewski ◽  
Andreas Kappler ◽  
James M. Byrne

<p>Ferrihydrite (Fh) is a short-range ordered Fe(III) oxyhydroxide which is often associated with significant amounts of trace metals in soils and sediments. Fh is frequently observed to be unstable under reducing conditions and can be transformed into secondary Fe minerals, during which associated trace metals are either redistributed in the minerals or released into solution. Natural organic matter (NOM), often coexisting with Fe minerals, is known to alter the transformation pathways of Fh, however, its effect on associated trace metals is not well known. Here we investigated how cadmium (Cd) is redistributed when Fh undergoes microbial Fe(III) reduction in the presence of NOM. Incubation with the Fe(III)-reducing bacteria Geobacter sulfurreducens showed that the rate and extent of reduction of Cd-loaded Fh were enhanced by increasing concentrations of NOM (i.e. increasing C/Fe ratio). Under low C/Fe ratios, only 3-5% of Fe(III) was reduced, but around 70% of pre-adsorbed Cd was released into the aqueous phase due to Fh transformation to lepidocrocite. At high C/Fe ratio (1.6), the Fe(III) reduction rate in the first 6 hours became nearly 3 times faster than in the absence of NOM, and more than 35% of Fe(III) was reduced over 5 days, possibly because the adsorbed NOM decreased the size of aggregates and the residual NOM in solution worked as electron shuttle. No Fh transformation was observed (using Mössbauer spectroscopy or X-ray diffraction) suggesting NOM could impede Fh crystal growth, and there was only negligible Cd release into solution. Lower concentrations of aqueous Cd lowered the metal's toxicity toward Geobacter sulfurreducens thus enabling more prolonged microbial reduction. The negligible Cd released during microbial Fh reduction might be due to recapture of Cd (initially bound to Fh) by NOM adsorbed on Fh. In summary, our study suggests the presence of NOM can be beneficial for the stability of Cd adsorbed to Fh under reducing conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document