scholarly journals Structural stability of coprecipitated natural organic matter and ferric iron under reducing conditions

2012 ◽  
Vol 48 ◽  
pp. 81-89 ◽  
Author(s):  
Yumiko K. Henneberry ◽  
Tamara E.C. Kraus ◽  
Peter S. Nico ◽  
William R. Horwath
2020 ◽  
Author(s):  
Zhe Zhou ◽  
E. Marie Muehe ◽  
Elizabeth J. Tomaszewski ◽  
Andreas Kappler ◽  
James M. Byrne

<p>Ferrihydrite (Fh) is a short-range ordered Fe(III) oxyhydroxide which is often associated with significant amounts of trace metals in soils and sediments. Fh is frequently observed to be unstable under reducing conditions and can be transformed into secondary Fe minerals, during which associated trace metals are either redistributed in the minerals or released into solution. Natural organic matter (NOM), often coexisting with Fe minerals, is known to alter the transformation pathways of Fh, however, its effect on associated trace metals is not well known. Here we investigated how cadmium (Cd) is redistributed when Fh undergoes microbial Fe(III) reduction in the presence of NOM. Incubation with the Fe(III)-reducing bacteria Geobacter sulfurreducens showed that the rate and extent of reduction of Cd-loaded Fh were enhanced by increasing concentrations of NOM (i.e. increasing C/Fe ratio). Under low C/Fe ratios, only 3-5% of Fe(III) was reduced, but around 70% of pre-adsorbed Cd was released into the aqueous phase due to Fh transformation to lepidocrocite. At high C/Fe ratio (1.6), the Fe(III) reduction rate in the first 6 hours became nearly 3 times faster than in the absence of NOM, and more than 35% of Fe(III) was reduced over 5 days, possibly because the adsorbed NOM decreased the size of aggregates and the residual NOM in solution worked as electron shuttle. No Fh transformation was observed (using Mössbauer spectroscopy or X-ray diffraction) suggesting NOM could impede Fh crystal growth, and there was only negligible Cd release into solution. Lower concentrations of aqueous Cd lowered the metal's toxicity toward Geobacter sulfurreducens thus enabling more prolonged microbial reduction. The negligible Cd released during microbial Fh reduction might be due to recapture of Cd (initially bound to Fh) by NOM adsorbed on Fh. In summary, our study suggests the presence of NOM can be beneficial for the stability of Cd adsorbed to Fh under reducing conditions.</p>


2010 ◽  
Vol 59 (1) ◽  
pp. 99-108 ◽  
Author(s):  
M. Takács ◽  
Gy. Füleky

The Hot Water Percolation (HWP) technique for preparing soil extracts has several advantages: it is easily carried out, fast, and several parameters can be measured from the same solution. The object of this study was to examine the possible use of HWP extracts for the characterization of soil organic matter. The HPLC-SEC chromatograms, UV-VIS and fluorescence properties of the HWP extracts were studied and the results were compared with those of the International Humic Substances Society (IHSS) Soil Humic Acid (HA), IHSS Soil Fulvic Acid (FA) and IHSS Suwannee Natural Organic Matter (NOM) standards as well as their HA counterparts isolated by traditional extraction methods from the original soil samples. The DOM of the HWP solution is probably a mixture of organic materials, which have some characteristics similar to the Soil FA fractions and NOM. The HWP extracted organic material can be studied and characterized using simple techniques, like UV-VIS and fluorescence spectroscopy.


2000 ◽  
Vol 49 (5) ◽  
pp. 269-280 ◽  
Author(s):  
Cheng-Nan Chang ◽  
Ying-Shih Ma ◽  
Guor-Cheng Fang ◽  
Fang-Fong Zing

2004 ◽  
Vol 4 (5-6) ◽  
pp. 215-222 ◽  
Author(s):  
A.R. Costa ◽  
M.N. de Pinho

Membrane fouling by natural organic matter (NOM), namely by humic substances (HS), is a major problem in water treatment for drinking water production using membrane processes. Membrane fouling is dependent on membrane morphology like pore size and on water characteristics namely NOM nature. This work addresses the evaluation of the efficiency of ultrafiltration (UF) and Coagulation/Flocculation/UF performance in terms of permeation fluxes and HS removal, of the water from Tagus River (Valada). The operation of coagulation with chitosan was evaluated as a pretreatment for minimization of membrane fouling. UF experiments were carried out in flat cells of 13.2×10−4 m2 of membrane surface area and at transmembrane pressures from 1 to 4 bar. Five cellulose acetate membranes were laboratory made to cover a wide range of molecular weight cut-off (MWCO): 2,300, 11,000, 28,000, 60,000 and 75,000 Da. Severe fouling is observed for the membranes with the highest cut-off. In the permeation experiments of raw water, coagulation prior to membrane filtration led to a significant improvement of the permeation performance of the membranes with the highest MWCO due to the particles and colloidal matter removal.


2004 ◽  
Vol 4 (4) ◽  
pp. 175-182 ◽  
Author(s):  
K. Rojek ◽  
F.A. Roddick ◽  
A. Parkinson

Phanerochaete chrysosporium was shown to rapidly decolorise a solution of natural organic matter (NOM). The effect of various parameters such as carbon and nitrogen content, pH, ionic strength, NOM concentration and addition of Mn2+ on the colour removal process was investigated. The rapid decolorisation was related to fungal growth and biosorption rather than biodegradation as neither carbon nor nitrogen limitation, nor Mn2+ addition, triggered the decolorisation process. Low pH (pH 3) and increased ionic strength (up to 50 g L‒1 added NaCl) led to greater specific removal (NOM/unit biomass), probably due to increased electrostatic bonding between the humic material and the biomass. Adsorption of NOM with viable and inactivated (autoclaved or by sodium azide) fungal pellets occurred within 24 hours and the colour removal depended on the viability, method of inactivation and pH. Colour removal by viable pellets was higher under the same conditions, and this, combined with desorption data, confirmed that fungal metabolic activity was important in the decolorisation process. Overall, removals of up to 40–50% NOM from solution were obtained. Of this, removal by adsorption was estimated as 60–70%, half of which was physicochemical, the other half metabolically-dependent biosorption and bioaccumulation. The remainder was considered to be removed by biodegradation, although some of this may be ascribed to bioaccumulation and metabolically-dependent biosorption.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 427-433 ◽  
Author(s):  
J. van Leeuwen ◽  
C. Chow ◽  
R. Fabris ◽  
N. Withers ◽  
D. Page ◽  
...  

To gain an improved understanding of the types of organic compounds that are recalcitrant to water treatment, natural organic matter (NOM) isolates from two drinking water sources (Mt. Zero and Moorabool reservoirs, Victoria, Australia) were separated into fractions of distinct chemical behaviour using resins. Four fractions were obtained from each water source and were organics absorbed to: (1) XAD-8 (very hydrophobic acids, VHA); (2) DAX-4 (slightly hydrophobic acids, SHA); (3) bound to an anion exchange resin (charged organics, CHAR); and (4) not absorbed or bound to resins (neutrals, NEUT). These fractions were then tested to determine the capacity of alum to remove them from water and to correlate this with the character of each isolate. The fractions were characterised by the application of high performance size exclusion chromatography (HPSEC), bacterial regrowth potential (BRP), trihalomethane formation potential (THMFP), pyrolysis gas-chromatography mass spectrometry (Py-GC-MS) and thermochemolysis. The highest removals of dissolved organic carbon (DOC) by alum treatment were in waters spiked with the CHAR fractions while the NEUT fractions were the most recalcitrant. The number average molecular weights (Mn) of DOC of the CHAR fractions before treatment were the highest, whilst those of the NEUT fractions were the lowest. After alum treatment, the Mn of the NEUT fractions were only slightly reduced. Results from Py-GC-MS and thermochemolysis indicate that the NEUT fractions had the highest relative proportion of saccharide derived organic material. Nonetheless, the BRP of waters spiked with the NEUT fractions differed markedly, indicating that organics recalcitrant to alum treatment can vary substantially in their chemical composition and capacity to support microbial growth.


Sign in / Sign up

Export Citation Format

Share Document