06/01262 The effect of the mixing characters of primary and secondary air on NOx formation in a swirling pulverized coal flame

2006 ◽  
Vol 47 (3) ◽  
pp. 189
Author(s):  
Peter Griebel ◽  
Michael Fischer ◽  
Christoph Hassa ◽  
Eggert Magens ◽  
Henning Nannen ◽  
...  

In this research work the potential of rich quench lean combustion for low emission aeroengines is investigated in a rectangular atmospheric sector, representing a segment of an annular combustor. For a constant design point (cruise) the mixing process and the NOx formation are studied in detail by concentration, temperature and velocity measurements using intrusive and non-intrusive measuring techniques. Measurements at the exit of the homogeneous primary zone show relatively high levels of non-thermal NO. The NOx formation in the quench zone is very low due to the quick mixing of the secondary air achieved by an adequate penetration of the secondary air jets and a high turbulence level. The NOx and CO emissions at the combustor exit are low and the pattern factor of the temperature distribution is sufficient.


Fuel ◽  
2015 ◽  
Vol 142 ◽  
pp. 152-163 ◽  
Author(s):  
Masaya Muto ◽  
Hiroaki Watanabe ◽  
Ryoichi Kurose ◽  
Satoru Komori ◽  
Saravanan Balusamy ◽  
...  

Fuel ◽  
2005 ◽  
Vol 84 (16) ◽  
pp. 2093-2101 ◽  
Author(s):  
M GU ◽  
M ZHANG ◽  
W FAN ◽  
L WANG ◽  
F TIAN

Author(s):  
Guido Elsen ◽  
Alan D. Jensen ◽  
Axel Boehme ◽  
Jens Happel

The power generation industry is currently in a very difficult period of business restructuring. All the while, the demands to reduce emissions of NOx, SOx and particulates in accordance with the Clean Air Act continue. The high capital and operating cost of post-combustion NOx controls like Selective Catalytic Reduction (SCR) is leading to greater interest in finding methods to reduce NOx formation during combustion. The most cost effective means of reducing any pollutant is to never form it in the first place. The science behind combustion NOx control uses techniques which limit the amount of air available in the high temperature combustion zones where thermal NOx forms. Minimum NOx formation occurs when fuel and air mixing are carefully controlled to maintain required stoichiometric ratios. Additionally, controlling coal and air flow minimizes excess air requirements, can reduce unburned carbon resulting in better electrostatic precipitator performance and improved overall boiler efficiency. Thus maintaining fuel and air flow at optimal levels becomes a major concern if one wishes to achieve minimum NOx formation during combustion and maintain optimum boiler performance throughout the units load range. Since pulverized coal is transported by primary air in a two phase flow it has been difficult, if not impossible, in the past to measure coal mass flow on a continuous basis. Typically, coal flow and fineness have been measured on an intermittent basis using extractive techniques. This paper serves to introduce a real-time “flow measuring system” for pulverized coal, based on the use of microwave technology. It will describe how microwaves are used to obtain very accurate coal flow measurements. Comparisons of data obtained using the microwave system will be made with measurements obtained using extractive isokinetic methods. Some relevant operational effects from both US and German installations will be discussed and projections of operational savings will be made especially when using the system on an SCR equipped installation.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 220
Author(s):  
Domenico Lahaye ◽  
Mohamed el Abbassi ◽  
Kees Vuik ◽  
Marco Talice ◽  
Franjo Juretić

This work studies how non-premixed turbulent combustion in a rotary kiln depends on the geometry of the secondary air inlet channel. We target a kiln in which temperatures can reach values above 1800 degrees Kelvin. Monitoring and possible mitigation of the thermal nitric-oxide (NOx) formation is of utmost importance. The performed reactive flow simulations result in detailed maps of the spatial distribution of the flow, thermodynamics and chemical conditions of the kiln. These maps provide valuable information to the operator of the kiln. The simulations show the difference between the existing and the newly proposed geometry of the secondary air inlet. In the existing configuration, the secondary air inlet is rectangular and located above the base of the burner pipe. The secondary air flows into the furnace from the top of the flame. The heat release by combustion is unevenly distributed throughout the flame. In the new geometry, the secondary air inlet is an annular ring placed around the burner pipe. The secondary air flows circumferentially around the burner pipe. The new secondary air inlet geometry is shown to result in a more homogeneous spatial distribution of the heat release throughout the flame. The peak temperatures of the flame and the production of thermal NOx are significantly reduced. Further research is required to resolve limitations of various choices in our modeling approach.


Sign in / Sign up

Export Citation Format

Share Document