Mechanistic differences in utilization of absorbed excitation energy within photosynthetic apparatus of Norway spruce induced by the vertical distribution of photosynthetically active radiation through the tree crown

Plant Science ◽  
1998 ◽  
Vol 133 (2) ◽  
pp. 155-165 ◽  
Author(s):  
Vladimı́r Špunda ◽  
Martin Čajánek ◽  
Jiřı́ Kalina ◽  
Irena Lachetová ◽  
Miroslava Šprtová ◽  
...  
Author(s):  
Michal Bellan ◽  
Irena Marková ◽  
Andrii Zaika ◽  
Jan Krejza

Light use efficiency (LUE or photosynthetically active radiation use efficiency) in production of young spruce stands aboveground biomass was determined at the study sites Rájec (the Drahanská vrchovina Highland) and Bílý Kříž (the Moravian‑Silesian Beskids Mountains) in 2014 and 2015. The LUE value obtained for the investigated spruce stands were in the range of 0.45 – 0.65 g DW MJ–1. The different LUE values were determined for highland and mountain spruce stand. The differences were caused by growth and climatic conditions and by the amount of assimilatory apparatus (LAI).


2015 ◽  
Vol 5 (2) ◽  
pp. 222-229 ◽  
Author(s):  
Mariana Gonzalez Medina ◽  
Roxana Avalos-Chacon

To date, a limited knowledge is available about Umbilicaria antarctica responses when it is exposed high doses of UV-B radiation. It is well established that resistance of Antarctic lichens to natural UV-B levels including increased doses during ozone hole period is high, thanks to numerous photoprotective mechanism. Capacity of the photoprotective processes, however, is not well known This study attempts to determine changes on the photosynthetic efficiency and on the synthesis of UV-B absorbing compounds of U. antarctica when exposed to low photosynthetically active radiation and extremely high intensity of UV-B light: 3.0 W m-2, of UV-B for 3 hours, 6 hours and 7 days. During the experiment, chlorophyll fluorescence was measured to evaluate changes in photosynthetic apparatus of intrathalline alga. After 7 d exposition, amount of UV-B absorbing compounds was evaluated in U. antarctica. Heavy UV-B stress let to an increase in chlorophyll fluorescence kinetics (OJIPs), however, majority of parameters related to functioning of PS II remained unchanged indicating high resistance of U. antarctica to UV-B stress. Potential (FV/FM) and actual (ФPSII) yields of PS II were not affected by the UV-B treatment as well. In majority of cases, heavy UV-B treatment led to a decrease in the amount of UV-B absorbing compounds extracted from treated thalli.


1988 ◽  
Vol 15 (2) ◽  
pp. 223 ◽  
Author(s):  
RW Pearcy

The light environment in forest understories is highly dynamic because the weak shade light is period- ically punctuated by lightflecks lasting from a second or less to tens of minutes. Although present for only a small fraction of the day, these lightflecks can contribute more than two-thirds of the photosynthetically active radiation. Several factots are of importance in determining the capacity of a leaf to utilise lightflecks. Following long low-light periods the induction state of the photosynthetic apparatus is limiting. During induction, 20-60 min may be required before maximum assimilation rates are reached due first to a light activation requirement. of ribulose-1,5-bisphosphate carboxylasel oxygenase and later to the light-induced stomatal opening. Continuous light is not required and induction occurring during a series of lightflecks results in higher carbon gain for later as compared to earlier lightflecks. Post-illumination CO2 fixation resulting from utilisation of metabolite pools built up during the lightfleck can significantly enhance carbon gain during short (5-20 s) lightflecks. The carbon gain of a leaf in response to a lightfleck is a consequence of the limitations imposed by induction state plus the enhancements due to post-illumination CO2 fixation. In the field, this will depend on the frequency and duration of the lightflecks and the duration of the intervening low-light periods.


Author(s):  
Irena Marková ◽  
Jiří Kubásek

Analysis of transmittance of young Norway spruce stand canopy for photosynthetically active radiation (PAR) was made at the study site of Bílý Kříž (the Moravian-Silesian Beskids Mts., the Czech Republic) at different sky conditions during the growing season in 2010. For the description of PAR transmittance different phenological phases of the spruce stand development in clear and overcast days were chosen. The mean daily PAR transmittance of the spruce canopy was significantly higher in overcast days compared with clear ones. Diffuse PAR thus penetrated into lower parts of the canopy more efficiently than direct one. PAR transmittance of young Norway spruce stand canopy was different in individual phenological phases of the spruce stand canopy which was caused by changes in the stand structure during the growing season. Thus monitoring of transmittance of young Norway spruce stand canopy for PAR can help to describe the development of spruce stand canopy.


2012 ◽  
Vol 50 (No. 10) ◽  
pp. 489-495
Author(s):  
T. Zemánek ◽  
M. Martinková ◽  
D. Štěrbová

The paper deals with the health condition of sample trees of Norway spruce (Picea abies [L.] Karst.) on the basis of the distribution and quantity of chlorophyll a + b and carotenoids with respect to the gradient of radiation in the tree crown. The content of photosynthetic pigments (PhP) was determined by spectrophotometric analysis. The sample tree is situated at the Rájec nad Svitavou locality, the Drahany Upland, altitude 625 to 640 m. Within the gradient of the content of PhP in the vertical and horizontal profile of a tree, it was shown that the inner coordination of the content of PhP in the crown in relation to the age of needles and their insolation was sufficient. Thus, the tree does not show impaired health condition and its growth retardation results from the short crown. The extent of a photosynthetic apparatus and stability of the tree would be increased particularly after elongation of the lower part of a crown, so-called compensating part.


2004 ◽  
Vol 34 (12) ◽  
pp. 2517-2527 ◽  
Author(s):  
P Muukkonen ◽  
A Lehtonen

Turnover rates of needle and branch biomass, number of needle cohorts, and needle-shed dynamics were modelled for Norway spruce (Picea abies (L.) Karst.) in southern Finland. Biomass turnover rates, vertical distribution, and biomass of the branches were modelled simultaneously. The rate of needle turnover was determined from needle-shed dynamics. The potential litterfall of branches was modelled by combining the vertical distribution of branch biomass and the annual change in height of the crown base. The mean annual turnover rates for needle and branch biomass are 0.10 and 0.0125, respectively. At the age of 5.5 years, 50% of the needles in the needle cohort have been shed. In addition, at the age of 12 years, all needles of the needle cohort have been shed. Turnover of branch biomass was dependent on stand density and tree size. The modelled rates of biomass turnover agreed with measurements of needle and branch litterfall. Many process- or inventory-based models use a single turnover rate for branch litterfall based on literature, and some of the models are fully ignoring the litterfall of branches. Species-specific turnover rates or dynamic litterfall models should be applied when carbon flows in forest stands are modelled.


2006 ◽  
Vol 36 (1) ◽  
pp. 227-237 ◽  
Author(s):  
F Fleischer ◽  
S Eckel ◽  
I Schmid ◽  
V Schmidt ◽  
M Kazda

A previous study by Schmid and Kazda (I. Schmid and M. Kazda. 2001. Can. J. For. Res. 31: 539–548) evaluated the vertical distribution and radial growth of coarse roots greater than 2 mm diameter in pure and mixed stands of Norway spruce (Picea abies (L.) Karst.) and European beech (Fagus sylvatica L.). The vertical distribution of roots of Norway spruce was fitted by an exponential function, while the root distribution of European beech was approximated by a gamma distribution. Now, in the present paper, planar point process models have been applied to investigate the spatial (two-dimensional) distribution of data for roots between 2 and 5 mm diameter. After a homogenization with respect to the vertical axis, the pair correlation function and the L function were estimated to fit Matérn-cluster point process models to the given root data. The models were finally vertically retransformed to provide information on the inhomogeneous spatial patterns of small roots as well as on the original shape and size of the root clusters. All models based on vertically transformed data confirmed that the root distribution patterns are not completely random, as they indicated root clustering for both species, with different degrees of exploitation intensity (clustering) between the two species. According to the Matérn-cluster models, Norway spruce had stronger clustering in smaller cluster regions, while roots of European beech formed weaker clusters in larger cluster regions. Furthermore, beech root clusters seemed to avoid overlapping. Together with previous studies on the root system of both species, the present study indicates more intensive belowground intraspecific competition for spruce than for beech. On the other hand, the clustering characteristics described indicate that European beech has a more sophisticated rooting system than Norway spruce. The spatial distribution of the inhomogeneous raw data is characterized by the clustering properties analysed in the present paper and by the vertical distribution previously studied.


Sign in / Sign up

Export Citation Format

Share Document