Czech Polar Reports
Latest Publications


TOTAL DOCUMENTS

211
(FIVE YEARS 54)

H-INDEX

10
(FIVE YEARS 2)

Published By Masaryk University Press

1805-0697, 1805-0689

2021 ◽  
Vol 11 (1) ◽  
pp. 98-113
Author(s):  
Sergey Golubev

Antarctica is free of urbanisation, however, 40 year-round and 32 seasonal Antarctic stations operate there. The effects of such human settlements on Antarctic wildlife are insufficiently studied. The main aim of this study was to determine the organization of the bird population of the Mirny Station. The birds were observed on the coast of the Davis Sea in the Mirny (East Antarctica) from January 8, 2012 to January 7, 2013 and from January 9, 2015 to January 9, 2016. The observations were carried out mainly on the Radio and Komsomolsky nunataks (an area of about 0.5 km). The duration of observations varied from 1 to 8 hours per day. From 1956 to 2016, 13 non-breeding bird species (orders Sphenisciformes, Procellariiformes, Charadriiformes) were recorded in the Mirny. The South polar skuas (Catharacta maccormicki) and Adélie penguins (Pygoscelis adeliae) form the basis of the bird population. South polar skuas are most frequently recorded at the station. Less common are Brown skuas (Catharacta antarctica lonnbergi) and Adélie penguins. Adélie penguins, Wilson's storm petrels (Oceanites oceanicus), South polar and Brown skuas are seasonal residents, the other species are visitors. Adélie penguins, Emperor (Aptenodytes forsteri), Macaroni (Eudyptes chrysolophus) and Chinstrap penguins (Pygoscelis antarctica), Wilson's storm petrels, South polar and Brown skuas interacted with the station environment, using it for comfortable behavior, feeding, molting, shelter from bad weather conditions, and possible breeding. South polar and Brown skuas tend to be attracted to the station, while other Antarctic bird species are indifferent to humans. Birds spend part of the annual cycle at the station or visit it with different frequency, but they cannot meet their ecological needs there all year round. The study improves our understanding of the regularities of the phenomenon of urbanization of the avifauna in the polar regions of the planet Earth. 


2021 ◽  
Vol 11 (1) ◽  
pp. 1-8
Author(s):  
Juan Manuel Solano ◽  
Carlos Alberto Vargas ◽  
Adriana Maria Gulisano

A new permanent geophysical station was installed in the Seymour-Marambio Island, Antarctica, for monitoring electromagnetic, CO2, and CH4 gas signals. Those signals require specialized low noise instruments and the survey shall be carried out in places far away from cultural noise, such as populated human settlements. The most suitable place would be near the Earth's poles, where noise is the lowest possible. To measure these variables, the Geophysical Instrumentation Laboratory (Laboratorio de Instrumentación Geofísica - LIG) of the Universidad Nacional de Colombia, in a partnership with the Instituto Antártico Argentino (IAA) under the Argentinean National Antarctic Direction (Dirección Nacional del Antártico - DNA), deployed the COCOAonMEAT project, oriented to design, built and install a low-cost station with time synchronization via GPS and data transmission in almost real-time. Since January 2020, the project monitors continuously (24/7) seven variables: three magnetic components, two electric dipoles, methane (CH4), and carbon dioxide (CO2) gas. Due to operative facilities and its low electromagnetic noise, the place chosen for its installation was the Argentinean Marambio Scientific Base in the Antarctic Peninsula, with the Multidisciplinary Antarctic Laboratory's collaboration (Laboratorio Multidisciplinario Antártico en la Base Marambio - LAMBI). This station provides valuable information on electromagnetic signals and greenhouse gases related to regional tectonic activity and local perturbations associated with global climate change.


2021 ◽  
Vol 11 (1) ◽  
pp. 114-133
Author(s):  
Boris Ivanov ◽  
Tatiana Karandasheva ◽  
Valery Demin ◽  
Anastasiia Revina ◽  
Pavel Sviashchennikov ◽  
...  

Electronic archives of data from standard meteorological observations (mean daily/monthly surface air temperatures - SAT) at the meteorological stations at Bukhta Tikhaya (Hooker Island, 1929-1960) and Krenkel Observatory (Hayes Island, 1957-2017) on Franz Josef Land (FJL) are presented. Parallel data series of SAT made in 1958 and 1959 on both meteorological stations were analyzed. Linear regression equations used for extrapolation of observational data representative for Krenkel Observatory for the period 1929-1957 are also presented. The assessment of long-term changes in SAT on FJL was carried out based on the analysis of the obtained series (1929-2017). The main conclusions that follow from our study are: (1) The total warming in the FJL archipelago was 1.6-1.8°C (0.2°C/decade) for the entire available period of instrumental observations (1929-2017); (2) The highest rates of warming were recorded in March-April and amounted to 0.6°C/decade; (3) A particular strong warming has been observed since the 1990s. The annual temperature increased by 6.3°C (2.2°C/decade) for the period 1990-2017 and 5.2°C (2.9°C/decade) for the period 2000-2017; (4) For the period 1990-2017 the maximum rate of warming occurred between October to February with 4.4°C/decade; (5) For the period 2000-2017 the maximum rate of warming occurred between January to April and from November to December with 5.6°C/decade; (6) The dominant seasons of the year are winter (November-April), spring (May), summer (June-September) and autumn (October); (7) Over the entire observation period the largest temperature increase was observed in the winter season. During the period of modern warming (1990-2017), the largest temperature increase was observed in winter and autumn.


2021 ◽  
Vol 11 (1) ◽  
pp. 41-66
Author(s):  
Kseniya Mihajlovna Nikerova ◽  
Nataliya Alekseevna Galibina ◽  
Yuliya Leonidovna Moshchenskaya ◽  
Irina Nikolaevna Sofronova ◽  
Marina Nikolaevna Borodina ◽  
...  

The influence of major nutrients’ reserves (available to plants) – nitrogen (N), phosphorus (P), potassium (K) – in the top 25-cm layer of soil on the Karelian birch (Betula pendula Roth var. carelica (Mercl.) Hämet-Ahti) with non-figured and figured wood via the antioxidant enzymes’ activity was investigated. The analysis of sites in area where Karelian birch trees with varying degree of figured wood intensity were growing was carried out. The cambial zone of the sample trees during active cambial growth period was studied for the activity of AOS enzyme complex (superoxide dismutase (SOD); catalase (CAT); peroxidase (POD); polyphenol oxidase (PPO)). Cellulose content and lignin content were studied. It was noticed that the availability of major nutrients in the investigated sites had influence on the degree of figured wood intensity in Karelian birch plants. Thus, non-figured and figured Karelian birch plants that grew on sites with various levels of major nutrients’ reserves differed in the AOS enzymes’ activity, which was a consequence of different xylogenesis scenarios in the studied birch forms. It was supposed, that the certain site conditions (N, P, K levels) formation could affect the degree of figured wood intensity, cellulose and lignin content. The N level and P/N ratio had the most effects under the adequate K level. So AOS enzymes’ complex activity could indicate differences in Karelian birch wood quality in sites that differ in soil fertility (N, P, K levels).


2021 ◽  
Vol 11 (1) ◽  
pp. 67-85
Author(s):  
Polina Lemenkova

This paper presents the GRASS GIS-based thematic mapping of Antarctica using scripting approach and associated datasets on topography and geophysics. The state-of-the art in cartographic development points at two important aspects. The first one comprises shell scripting promoted repeatability of the GIS technique, increased automatization in cartographic workflow, and compatibility of GRASS with Python, PROJ and GDAL libraries which enables advanced geospatial data processing: converting formats, re-projecting and spatial analysis. The second aspect is that data visualization greatly influences geologic research through improving the interpretation between the Antarctic glaciation and surface. This includes the machine learning algorithms of image classification enabling to distinguish between glacier and non-glacier surfaces through automatically partitioning data and analysis of various types of surfaces. Presented detailed maps of Antarctic include visualized datasets from the ETOPO1, GlobSed, EGM96 and Bedmap2 projects. The grids include bed and surface elevation, ETOPO1-based bathymetry and topography, bed, ice and sediment thickness, grounded bed uncertainty, subglacial bed elevation, geoid undulations, ice mask grounded and shelves. Data show the distribution of the present-day glacier, geophysical fields and topographic landforms for analysis of processes and correlations between the geophysical and geological phenomena. Advances in scripting cartography are significant contributions to the geological and glaciological research. Processing high-resolution datasets of Southern Ocean retrieved by remote sensing methods present new steps in automatization of the digital mapping, as presented in this research, and promotes comprehensive monitoring of geological, permafrost and glacial processes in Antarctica. All maps have been plotted using GRASS GIS version 7.8. with technical details of scripts described and interpreted.


2021 ◽  
Vol 11 (1) ◽  
pp. 154-160
Author(s):  
Andreas Alexander

Glacier cave visits are an important tourism activity on Svalbard with increasing popularity. This study investigates the thermal effect of touristic visits on the air temperature of a glacier cave on Longyearbreen, a small high-Arctic glacier. Short-term temperature perturbations of up to 1.59°C (42% local temperature increase) can be linked to human visitors. It is, however, unlikely that the local heat input from touristic visits is high enough to cause a lasting effect on the thermal regime of glacier caves and the surrounding ice.


2021 ◽  
Vol 11 (1) ◽  
pp. 134-153
Author(s):  
Olga Podolich ◽  
Ievgeniia Prekrasna ◽  
Ivan Parnikoza ◽  
Tamara Voznyuk ◽  
Ganna Zubova ◽  
...  

Endophytic bacteria, recognized for their beneficial effects on plant development and adaptation, can facilitate the survival of Antarctic plants in severe environments. Here we studied endophytes of the vascular plant Deschampsia antarctica Ė. Desv. from two distantly located regions in the maritime Antarctic: King George Island (South Shetland Islands) and Galindez Island (Argentine Islands). Bacterial group-specific PCR indicated presence of Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, Cytophaga-Flavobacteria and Actinobacteria in root and leaf endosphere of D. antarctica sampled at four distinct sites of both locations. The diversity of endophytic bacteria was significantly higher in the leaves compared to the roots in plants from Galindez Island. Similarly, the diversity of endophytes was higher in the leaves rather than roots of plants from the King George Island. Twelve bacterial species were isolated from roots of D. antarctica of Galindez Island (the Karpaty Ridge and the Meteo Point) and identified by sequencing the 16S rRNA gene. Isolates were dominated by the Pseudomonas genus, followed by the genera Bacillus and Micrococcus. The vast majority of the isolates exhibited cellulase and pectinase activities, however, Bacillus spp. expressed neither of them, suggesting lack of genetic flow of these traits in endophytic bacilli in the maritime Antarctic. Pseudomonas sp. IMBG305 promoted an increase in the leaf number in most of the treated plant genotypes when compared with non-inoculated plants, and a rapid vegetation period of D. antarctica cultured in vitro, albeit the length of leaves in the treated plants was significantly lower, and flavonoid content leveled off in all treated plants. D. antarctica is known to develop diverse ecotypes with regard to ecological conditions, such as organic input, moisture or wind exposition. The D. antarctica phenotype could be extended further through the endophyte colonization, since phenotypic changes were observed in the inoculated D. antarcticaplants grown in vitro in our study. Herewith, endophytes can contribute to plant phenotypic plasticity, potentially beneficial for adaptation of D. antarctica.


2021 ◽  
Vol 11 (1) ◽  
pp. 161-173
Author(s):  
Gabriella Nora Maria Giudici

Two chlorophyll fluorescence (ChlF) methods were used to study the effects of high light (photoinhibition) and dehydration, common stressors of the alpine environment, on primary photosynthetic processes in the moss Polytrichum commune from the Czech Republic, the Jeseníky Mountains. Photoinhibition (PI) was studied in fully hydrated thalli of P. commune and during the period of spontaneous desiccation. Time courses of Kautsky kinetics (KK) of ChlF and derived parameters: maximum quantum yield (FV/FM), effective quantum yeld (ΦPSII), and non-photochemical quenching parameters, were measured before and after the samples were treated with high light (1500 µmol m-2 s-1 PAR) for 60 min. Dehydration effects were tested in two sets of experiments with a Pulse-Amplitude-Modulation fluorometry (PAM) and Fast Chlorophyll Fluorescence induction curve (OJIP) techniques. In PAM tests, the desiccating samples were exposed to saturating light pulses every 10 min. in order to obtain ΦPSII and non-photochemical quenching (NPQ). In the second dehydration experiment, OJIP transients of ChlF were repeatedly recorded, OJIP-derived ChlF parameters were plotted against relative water content (RWC) monitored during desiccation. Combined ChF techniques provided insights into the mechanisms activated during P. commune desiccation, such as dissipation of excess absorbed energy through heat dissipation, and conformational changes or destructions of the light harvesting complexes. Combination of stressors resulted in amplified interference with the photosynthetic machinery, even when the added stressor (dehydration) was applied in low dose.


2021 ◽  
Vol 11 (1) ◽  
pp. 25-40
Author(s):  
Tereza Cahová ◽  
Barbora Chattová

The Antarctic diatom flora has been at the centre of interest of many studies in past decades. The present paper brings new information on the species richness, biogeography and community composition of diatoms on the Ardley Island, South Shetland Islands. One fresh-water and ten soil samples had been collected from the Antarctic Special protected area (ASPA) in the spring of 2019. The following analysis revealed eighty-six diatom taxa in well-developed communities, dominated by Luticola muticopsis, L. truncata, Pinnularia australoschoenfelderi, P. austroshetlandica and P. borealis. According to the current biogeographical knowledge, the majority of species have restricted distribution among the Antarctic Realm; 46.5% of them are reported from various islands of the Maritime Antarctic Region. Based on the dominance of species as Luticola muticopsis and L. truncata and their ecological preferences, we concluded that the species composition of the diatom communities is driven by high nutrient input from breeding seabirds and the moisture availability during the austral summer.


2021 ◽  
Vol 11 (1) ◽  
pp. 86-97
Author(s):  
Pastor Ignacio Achával ◽  
Carlos Leonardo Di Prinzio

The migration of a grain triple junction was studied on ice pure samples with bubbles at -2°C for almost 3 h. This work studies the interaction between Grain Boundary (GB) and bubbles. The evolution of the triple junction was recorded from successive photographs obtained from a LEICA® optical microscope. Simultaneously, numerical simulations of grain triple junction with mobile bubbles were carried out using Monte Carlo method with the following conditions: The bubbles in the bulk were kept immobile and those in the GB were allowed to move. In addition, mobile bubbles were forced to stay inside the GB. The simulations show that bubbles slow down the movement of the GB and of the triple junction. What’s more, the simulated triple junction obtained fits very well the experimental triple junction geometry, and the GB diffusivity values obtained coincide with those measured experimentally at the same temperature and reported by other authors. Finally, the drag effect of the mobile bubbles on the GB migration was verified.


Sign in / Sign up

Export Citation Format

Share Document