Contamination issues in hydrogen plasma immersion ion implantation of silicon—a brief review

2002 ◽  
Vol 156 (1-3) ◽  
pp. 244-252 ◽  
Author(s):  
Paul K Chu
2001 ◽  
Vol 90 (8) ◽  
pp. 3743-3749 ◽  
Author(s):  
Paul K. Chu ◽  
Ricky K. Y. Fu ◽  
Xuchu Zeng ◽  
Dixon T. K. Kwok

Biomaterials ◽  
2005 ◽  
Vol 26 (31) ◽  
pp. 6129-6135 ◽  
Author(s):  
Youtao Xie ◽  
Xuanyong Liu ◽  
Anping Huang ◽  
Chuanxian Ding ◽  
Paul K. Chu

2005 ◽  
Vol 26 (2) ◽  
pp. 90-92 ◽  
Author(s):  
Jang-Gn Yun ◽  
Soon-Young Oh ◽  
Bin-Feng Huang ◽  
Hee-Hwan Ji ◽  
Yong-Goo Kim ◽  
...  

2020 ◽  
Vol 1492 ◽  
pp. 012056
Author(s):  
A Szekeres ◽  
S Alexandrova ◽  
P Terziyska ◽  
M Anastasescu ◽  
M Stoica ◽  
...  

1996 ◽  
Vol 452 ◽  
Author(s):  
Z. Fan ◽  
Paul K. Chu ◽  
X. Lu ◽  
S. S. K. Iyer ◽  
N. W. Cheung

AbstractPlasma Immersion Ion Implantation (PIII) excels in several areas over conventional ion implantation, for example, higher dose, shorter implantation time, and lower overall cost. The technique can be used to fabricate buried porous silicon. In our experiment, hydrogen is implanted into Si by PIII at 5–30kV to form underlying porous silicon (PS) which emits light at an energy higher than the Si bandgap. The optical properties of the PS samples as measured by photoluminescence are quite good. The PHI technique therefore offers an alternative means to fabricate buried porous silicon structures which can potentially be used to fabricate optoelectronic devices in silicon.


Sign in / Sign up

Export Citation Format

Share Document