Variability in surface and deep water conditions in the nordic seas during the last interglacial period

1998 ◽  
Vol 17 (9-10) ◽  
pp. 963-985 ◽  
Author(s):  
Torben Fronval ◽  
Eystein Jansen ◽  
Haflidi Haflidason ◽  
Hans Petter Sejrup
Nature ◽  
2001 ◽  
Vol 410 (6832) ◽  
pp. 1073-1077 ◽  
Author(s):  
C. Hillaire-Marcel ◽  
A. de Vernal ◽  
G. Bilodeau ◽  
A. J. Weaver

2009 ◽  
Vol 288 (1-2) ◽  
pp. 10-19 ◽  
Author(s):  
David A. Hodell ◽  
Emily Kay Minth ◽  
Jason H. Curtis ◽  
I. Nicholas McCave ◽  
Ian R. Hall ◽  
...  

Science ◽  
2014 ◽  
Vol 346 (6216) ◽  
pp. 1514-1517 ◽  
Author(s):  
Christopher T. Hayes ◽  
Alfredo Martínez-García ◽  
Adam P. Hasenfratz ◽  
Samuel L. Jaccard ◽  
David A. Hodell ◽  
...  

During the last interglacial period, global temperatures were ~2°C warmer than at present and sea level was 6 to 8 meters higher. Southern Ocean sediments reveal a spike in authigenic uranium 127,000 years ago, within the last interglacial, reflecting decreased oxygenation of deep water by Antarctic Bottom Water (AABW). Unlike ice age reductions in AABW, the interglacial stagnation event appears decoupled from open ocean conditions and may have resulted from coastal freshening due to mass loss from the Antarctic ice sheet. AABW reduction coincided with increased North Atlantic Deep Water (NADW) formation, and the subsequent reinvigoration in AABW coincided with reduced NADW formation. Thus, alternation of deep water formation between the Antarctic and the North Atlantic, believed to characterize ice ages, apparently also occurs in warm climates.


Science ◽  
2014 ◽  
Vol 343 (6175) ◽  
pp. 1129-1132 ◽  
Author(s):  
E. V. Galaasen ◽  
U. S. Ninnemann ◽  
N. Irval  ◽  
H. F. Kleiven ◽  
Y. Rosenthal ◽  
...  

2016 ◽  
Vol 12 (9) ◽  
pp. 1933-1948 ◽  
Author(s):  
Amaelle Landais ◽  
Valérie Masson-Delmotte ◽  
Emilie Capron ◽  
Petra M. Langebroek ◽  
Pepijn Bakker ◽  
...  

Abstract. The last interglacial period (LIG, ∼ 129–116 thousand years ago) provides the most recent case study of multimillennial polar warming above the preindustrial level and a response of the Greenland and Antarctic ice sheets to this warming, as well as a test bed for climate and ice sheet models. Past changes in Greenland ice sheet thickness and surface temperature during this period were recently derived from the North Greenland Eemian Ice Drilling (NEEM) ice core records, northwest Greenland. The NEEM paradox has emerged from an estimated large local warming above the preindustrial level (7.5 ± 1.8 °C at the deposition site 126 kyr ago without correction for any overall ice sheet altitude changes between the LIG and the preindustrial period) based on water isotopes, together with limited local ice thinning, suggesting more resilience of the real Greenland ice sheet than shown in some ice sheet models. Here, we provide an independent assessment of the average LIG Greenland surface warming using ice core air isotopic composition (δ15N) and relationships between accumulation rate and temperature. The LIG surface temperature at the upstream NEEM deposition site without ice sheet altitude correction is estimated to be warmer by +8.5 ± 2.5 °C compared to the preindustrial period. This temperature estimate is consistent with the 7.5 ± 1.8 °C warming initially determined from NEEM water isotopes but at the upper end of the preindustrial period to LIG temperature difference of +5.2 ± 2.3 °C obtained at the NGRIP (North Greenland Ice Core Project) site by the same method. Climate simulations performed with present-day ice sheet topography lead in general to a warming smaller than reconstructed, but sensitivity tests show that larger amplitudes (up to 5 °C) are produced in response to prescribed changes in sea ice extent and ice sheet topography.


Sign in / Sign up

Export Citation Format

Share Document