scholarly journals First passage time distribution for anomalous diffusion

2000 ◽  
Vol 273 (5-6) ◽  
pp. 322-330 ◽  
Author(s):  
Govindan Rangarajan ◽  
Mingzhou Ding
2011 ◽  
Vol 52 (8) ◽  
pp. 083301 ◽  
Author(s):  
A. T. Silva ◽  
E. K. Lenzi ◽  
L. R. Evangelista ◽  
M. K. Lenzi ◽  
H. V. Ribeiro ◽  
...  

1987 ◽  
Vol 1 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Mark Brown ◽  
Yi-Shi Shao

The spectral approach to first passage time distributions for Markov processes requires knowledge of the eigenvalues and eigenvectors of the infinitesimal generator matrix. We demonstrate that in many cases knowledge of the eigenvalues alone is sufficient to compute the first passage time distribution.


2018 ◽  
Vol 13 (1) ◽  
pp. 10 ◽  
Author(s):  
Pengbo Xu ◽  
Weihua Deng

For the particles undergoing the anomalous diffusion with different waiting time distributions for different internal states, we derive the Fokker-Planck and Feymann-Kac equations, respectively, describing positions of the particles and functional distributions of the trajectories of particles; in particular, the equations governing the functional distribution of internal states are also obtained. The dynamics of the stochastic processes are analyzed and the applications, calculating the distribution of the first passage time and the distribution of the fraction of the occupation time, of the equations are given. For the further application of the newly built models, we make very detailed discussions on the none-immediately-repeated stochastic process, e.g., the random walk of smart animals.


1983 ◽  
Vol 11 (4) ◽  
pp. 1000-1008 ◽  
Author(s):  
Mark Brown ◽  
Narasinga R. Chaganty

1977 ◽  
Vol 14 (4) ◽  
pp. 850-856 ◽  
Author(s):  
Shunsuke Sato

This paper gives an asymptotic evaluation of the probability that the Wiener path first crosses a square root boundary. The result is applied to estimate the moments of the first-passage time distribution of the Ornstein–Uhlenbeck process to a constant boundary.


Sign in / Sign up

Export Citation Format

Share Document