Behaviour of butyl ether as entrainer for the extractive distillation of the azeotropic mixture propanone+diisopropyl ether. Isobaric VLE data of the azeotropic components with the entrainer

1999 ◽  
Vol 156 (1-2) ◽  
pp. 89-99 ◽  
Author(s):  
José M Resa ◽  
Cristina González ◽  
Miguel A Betolaza ◽  
Aitor Ruiz
2016 ◽  
Author(s):  
◽  
Travis Pio Benecke

Separation processes in the chemical process industries is dependent on the science of chemical thermodynamics. In the field of chemical separation process engineering, phase equilibrium is a primary area of interest. This is due to separation processes such as distillation and extraction which involves the contacting of different phases for effective separation. The focal point of this research project is the measurement and modeling of binary vapour-liquid equilibrium (VLE) phase data of systems containing ether-alcohol organic compounds. The VLE data were measured with the use of the modified apparatus of Raal and Mühlbauer, (1998). The systems of interest for this research arose from an industrial demand for VLE data for systems containing ether-alcohol organic compounds. This gave rise to the experimental VLE data isotherms being measured for the following binary systems: a) Methyl tert-butyl ether (1) + 1-pentanol (2) at 317.15 and 327.15 K b) Methyl tert-butyl ether (1) + 2, 2, 4-trimethylpentane (2) at 307.15, 317.15 and 327.15K c) 2, 2, 4-Trimethylpentane (1) + 1-pentanol (2) at 350.15, 360.15 and 370.15K d) Diisopropyl ether (1) + 2,2,4-trimethylpentane (2) at 320.15, 330.15 and 340.15K e) Diisopropyl ether (1) + 1-propanol (2) at 320.15, 330.15 and 340.15K f) Diisopropyl ether (1) + 2-butanol (2) at 320.15, 330.15 and 340.15K The data for all the measured binary systems investigated at these temperatures are currently not available in the open source literature found on the internet and in library text resources. The systems were not measured at the same temperatures because certain system isotherm temperatures correlate to a pressures above 1 bar. This pressure of 1 bar is the maximum operating pressure specification of the VLE apparatus used in this project. The experimental VLE data were correlated for model parameters for both the  and methods. For the method, the fugacity coefficients (vapour-phase non-idealities) were tabulated using the virial equation of state and the Hayden-O’Connell correlation (1975); chemical theory and the Nothnagel et al. (1973) correlation method. The activity coefficients (liquid phase non-idealities) were calculated using three local-composition based activity coefficients models: the Wilson (1964) model, the NRTL model (Renon and Prausnitz, 1968); and the UNIQUAC model (Abrams and Prausnitz, 1975). Regarding the direct method, the Soave-Redlich-Kwong (Redlich and Kwong, 1949) and Peng-Robinson (1976) equations of state ii were used with the temperature dependent alpha-function (α) of Mathias and Copeman (1983) with the Wong-Sandler (1992) mixing rule. Thermodynamic consistency testing, which presents an indication of the quality and reliability of the data, was also performed for all the experimental VLE data. All the systems measured showed good thermodynamic consistency for the point test of Van Ness et al. (1973) - the consistency test of choice for this research. This however, was based on the model chosen for the data regression of a particular system. Therefore, the combined method of VLE reduction produced the most favourable results for the NRTL and Wilson models.


2010 ◽  
Author(s):  
◽  
Peterson Thokozani Ngema

Globally there is renewed interest in the production of alternate fuels in the form of bioethanol and biodiesel. This is mainly due to the realization that crude oil stocks are limited hence the swing towards more renewable sources of energy. Bioethanol and biodiesel have received increasing attention as excellent alternative fuels and have virtually limitless potential for growth. One of the key processing challenges in the manufacturing of biofuels is the production of high purity products. As bioethanol is the part of biofuels, the main challenge facing bioethanol production is the separation of high purity ethanol. The separation of ethanol from water is difficult because of the existence of an azeotrope in the mixture. However, the separation of the ethanol/water azeotropic system could be achieved by the addition of a suitable solvent, which influences the activity coefficient, relative volatility, flux and the separation factor or by physical separation based on molecular size. In this study, two methods of high purity ethanol separation are investigated: extractive distillation and pervaporation. The objective of this project was to optimize and compare the performance of pervaporation and extraction distillation in order to produce high purity ethanol. The scopes of the investigation include:  Study of effect of various parameters (i) operating pressure, (ii) operating temperature, and (iii) feed composition on the separation of ethanol-water system using pervaporation.  Study the effect of using salt as a separating agent and the operating pressure in the extractive distillation process. The pervaporation unit using a composite flat sheet membrane (hydrophilic membrane) produced a high purity ethanol, and also achieved an increase in water flux with increasing pressure and feed temperature. The pervaporation unit facilitated separation beyond the ethanol – water system azeotropic point. It is concluded that varying the feed temperature and the operating pressure, the performance of the pervaporation membrane can be optimised. v The extractive distillation study using salt as an extractive agent was performed using the low pressure vapour-liquid equilibrium (LPVLE) still, which was developed by (Raal and Mühlbauer, 1998) and later modified by (Joseph et al. 2001). The VLE study indicated an increase in relative volatility with increase in salt concentration and increase in pressure operating pressure. Salt concentration at 0.2 g/ml and 0.3 g/ml showed complete elimination of the azeotrope in ethanol-water system. The experimental VLE data were regressed using the combined method and Gibbs excess energy models, particular Wilson and NRTL. Both models have shown the best fit for the ethanol/water system with average absolute deviation (AAD) below 0.005. The VLE data were subjected to consistency test and according to the Point test, were of high consistency with average absolute deviations between experimental and calculated vapour composition below 0.005. Both extractive distillation using salt as an extractive agent and pervaporation are potential technologies that could be utilized for the production of high purity ethanol in boiethanol-production.


2015 ◽  
Vol 54 (51) ◽  
pp. 12908-12919 ◽  
Author(s):  
Yinglong Wang ◽  
Shisheng Liang ◽  
Guangle Bu ◽  
Wei Liu ◽  
Zhen Zhang ◽  
...  

2021 ◽  
pp. 1-12
Author(s):  
Ingrid Zsilinszky ◽  
Balázs Fehér ◽  
István Kiss ◽  
Attila Komóczi ◽  
Péter Gyula ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document