Trace element compositions of minerals in garnet and spinel periodotite xenoliths from the Vitim volcanic field, Transbaikalia, eastern Siberia

Author(s):  
Sandra M. Glaser ◽  
Stephen F. Foley ◽  
Detlef Günther
2021 ◽  
Author(s):  
A.K. Gilmer ◽  
et al.

<div>Table S1: Whole-rock compositions of analyzed samples. Table S2: Major and trace element geochemistry of feldspar. Table S3: Major and trace element geochemistry of pyroxene. Table S4: Major and trace element geochemistry of biotite. Table S5: Major and trace element geochemistry of amphibole. Table S6: Zircon geochronology and trace element geochemistry. Table S7: Lutetium and hafnium isotopic compositions of zircon. Table S8: Amphibole-plagioclase thermometry. Table S9: Sample locations and lithologies.<br></div>


2019 ◽  
Vol 60 (12) ◽  
pp. 2317-2338 ◽  
Author(s):  
Marie-Noëlle Guilbaud ◽  
Claus Siebe ◽  
Christine Rasoazanamparany ◽  
Elisabeth Widom ◽  
Sergio Salinas ◽  
...  

Abstract The origin of the large diversity of rock types erupted along the subduction-related Trans-Mexican Volcanic Belt (TMVB) remains highly debated. In particular, several hypotheses have been proposed to explain the contemporary eruption of calc-alkaline and alkaline magmas along the belt. The Michoacán-Guanajuato Volcanic Field (MGVF) is an atypical, vast region of monogenetic activity located in the western-central part of the TMVB. Here we present new petrographic, geochemical, and isotopic (Sr–Nd–Pb–Os) data on recent volcanics in the Jorullo-Tacámbaro area that is the closest to the oceanic trench. TMVB-related volcanics in this area are Plio-Quaternary (&lt;5 Ma) and mainly form a calc-alkaline series from basalts to dacites, with rare (&lt;5 vol. %) alkaline rocks that range from trachybasalts to trachydacites, and transitional samples. Crystal textures are consistent with rapid crystallization at shallow depth and processes of mixing of similar magma batches (magma recharge). All of the samples exhibit an arc-type trace element pattern. Alkaline and transitional magmas have higher Na2O and K2O, lower Al2O3, and higher concentrations in incompatible elements (e.g. Sr, K, Ba, Th, Ce, P) compared to calc-alkaline rocks. Calc-alkaline rocks are similar isotopically to transitional and alkaline samples, except for a few low 87Sr/86Sr samples. Sr, Nd and Pb isotopes do not correlate with MgO or 187Os/188Os, indicating that they were not significantly influenced by crustal contamination. Isotopic and trace-element systematics suggest that the Tacámbaro magmas are produced by melting of a mantle wedge fluxed by fluids derived from a mixture of subducted sediments and altered oceanic crust. Alkaline and transitional magmas can be derived from a lower degree of partial melting of a similar source to that of the calc-alkaline rocks, whereas the few low 87Sr/86Sr calc-alkaline rocks require a lower proportion of fluid derived from oceanic sediments and crust. Volcanism at the trenchward edge of the MGVF was thus driven purely by subduction during the last 5 Ma, hence discarding slab rollback in this sector of the TMVB.


Minerals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 319 ◽  
Author(s):  
Sergei Rasskazov ◽  
Yi-Min Sun ◽  
Irina Chuvashova ◽  
Tatyana Yasnygina ◽  
Chen Yang ◽  
...  

In the Wudalianchi volcanic field, eruptions started with low-Mg potassic lava flows 2.5–2.0 Ma ago and later changed to both low- and moderate-Mg potassic compositions. Volcanic rocks from the Molabushan and Longmenshan volcanoes record an unusually wide range of Pb abundances (from 3.7 ppm to 21 ppm relative to predominant range of 10–15 ppm). To determine the cause of these, we performed a comparative trace-element and Pb isotope study of rocks from these volcanoes and older lava flows. On a uranogenic lead diagram, older low-Mg lavas from lithospheric mantle sources plot on a secondary isochron with a slope corresponding to an age of 1.88 Ga. This contrasts with moderate-Mg volcanic rocks from the Molabushan cone, interpreted to have been derived from a recent convective mantle source, which define a flat linear pattern. Low-Mg rocks from the Molabushan flow have lead isotopic compositions that indicate mixed Gelaqiu and Molabu sources. Relative to rocks from the Molabushan cone, moderate-Mg lavas and slags from the East Longmenshan volcano have modified compositions characterized by Pb, S, and Ni abundances, Ni/Co, Ni/MgO ratios as well as 206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, Ce/Pb, Th/Pb, and U/Pb ratios. We infer that the older Wudalianchi magmas were likely derived from a Paleoproterozoic lithospheric fragment, related to the evolved primordial mantle, and that later magmas were generated in the convecting mantle. These were influenced by segregation of small amounts of sulfides.


Sign in / Sign up

Export Citation Format

Share Document