Discriminative power of fatty acid methyl ester (FAME) analysis using the Microbial Identification System (MIS) for Candida (Torulopsis) glabrata and Saccharomyces cerevisiae

2000 ◽  
Vol 38 (4) ◽  
pp. 213-221 ◽  
Author(s):  
Heidrun Peltroche-Llacsahuanga ◽  
Silke Schmidt ◽  
Rudolf Lütticken ◽  
Gerhard Haase
2000 ◽  
Vol 38 (10) ◽  
pp. 3696-3704 ◽  
Author(s):  
Heidrun Peltroche-Llacsahuanga ◽  
Silke Schmidt ◽  
Michael Seibold ◽  
Rudolf Lütticken ◽  
Gerhard Haase

Candida dubliniensis is often found in mixed culture with C. albicans, but its recognition is hampered as the color of its colonies in primary culture on CHROMagar Candida varies. Furthermore, definite identification of C. dubliniensis is difficult to achieve, time-consuming, and expensive. Therefore, a method to discriminate between these two closely related yeast species by fatty acid methyl ester (FAME) analysis using gas-liquid chromatography (Sherlock Microbial Identification System [MIS]; MIDI, Inc., Newark, Del.) was developed. Although the chromatograms of these two species revealed no obvious differences when applying FAME analysis, a new library (CADLIB) was successfully created using Sherlock Library Generation Software (MIDI). The amount and frequency of FAME was analyzed using library training files (n = 10 for each species), preferentially those comprising reference strains. For testing the performance of the CADLIB, clinical isolates genetically assigned to the respective species (C. albicans, n = 32; C. dubliniensis, n = 28) were chromatographically analyzed. For each isolate tested, MIS computed a similarity index (SI) indicating a hierarchy of possible strain fits. When using the newly created library CADLIB, the SIs for C. albicans andC. dubliniensis ranged from 0.11 to 0.96 and 0.53 to 0.93 (for all but one), respectively. Only three isolates of C. albicans (9.4%) were misidentified as C. dubliniensis, whereas all isolates of C. dubliniensiswere correctly identified. Resulting differentiation accuracy was 90.6% for C. albicans and 100% for C. dubliniensis. Cluster analysis and principal component analysis of the resulting FAME profiles showed two clearly distinguishable clusters matching up with two assigned species for the strains tested. Thus, the created library proved to be well suited to discriminate between these two species.


2004 ◽  
Vol 67 (8) ◽  
pp. 1610-1616 ◽  
Author(s):  
ARTHUR HINTON ◽  
J. A. CASON ◽  
MICHAEL E. HUME ◽  
KIMBERLY D. INGRAM

The presence of Campylobacter spp. on broiler carcasses and in scald water taken from a commercial poultry processing facility was monitored on a monthly basis from January through June. Campylobacter agar, Blaser, was used to enumerate Campylobacter in water samples from a multiple-tank scalder; on prescalded, picked, eviscerated, and chilled carcasses; and on processed carcasses stored at 4°C for 7 or 14 days. The MIDI Sherlock microbial identification system was used to identify Campylobacter-like isolates based on the fatty acid methyl ester profile of the bacteria. The dendrogram program of the Sherlock microbial identification system was used to compare the fatty acid methyl ester profiles of the bacteria and determine the degree of relatedness between the isolates. Findings indicated that no Campylobacter were recovered from carcasses or scald tank water samples collected in January or February, but the pathogen was recovered from samples collected in March, April, May, and June. Processing generally produced a significant (P < 0.05) decrease in the number of Campylobacter recovered from broiler carcasses, and the number of Campylobacter recovered from refrigerated carcasses generally decreased during storage. Significantly (P < 0.05) fewer Campylobacter were recovered from the final tank of the multiple-tank scald system than from the first tank. MIDI similarity index values ranged from 0.104 to 0.928 based on MIDI–fatty acid methyl ester analysis of Campylobacter jejuni and Campylobacter coli isolates. Dendrograms of the fatty acid methyl ester profile of the isolates indicated that poultry flocks may introduce several strains of C. jejuni and C. coli into processing plants. Different populations of the pathogen may be carried into the processing plant by successive broiler flocks, and the same Campylobacter strain may be recovered from different poultry processing operations. However, Campylobacter apparently is unable to colonize equipment in the processing facility and contaminate broilers from flocks processed at later dates in the facility.


2001 ◽  
Vol 2001 (15) ◽  
pp. 780-788
Author(s):  
Il-Kyu Kim ◽  
Daniel K. Cha ◽  
Jeffry J. Fuhrmann ◽  
Ik-Tae Yeom ◽  
Kyu-Hong Ahn

1999 ◽  
Vol 33 (8) ◽  
pp. 1964-1966 ◽  
Author(s):  
Daniel K Cha ◽  
Jeffry J Fuhrmann ◽  
Dong W Kim ◽  
Caroline M Golt

1995 ◽  
Vol 41 (11) ◽  
pp. 1038-1042 ◽  
Author(s):  
P. H. Graham ◽  
M. J. Sadowsky ◽  
S. W. Tighe ◽  
J. A. Thompson ◽  
R. A. Date ◽  
...  

Fatty acid–methyl ester (FAME) and two-dimensional principal component analysis of 89 strains of Bradyrhizobium, most of which were from soybean, distinguished five groups of bradyrhizobia. These included one cluster containing several isolates previously designated as Bradyrhizobium elkanii, and two related clusters containing strains previously identified as belonging to Bradyrhizobium japonicum groups IA and IB. Not all of the organisms evaluated clustered with the B. japonicum and B. elkanii strains. A number of Bradyrhizobium strains isolated from soybean in Korea and northern Thailand had FAME profiles so different from the B. japonicum and B. elkanii strains as to warrant separation at the species level. A slow-growing isolate from Lupinus also had a FAME profile very different from those of the other bradyrhizobia. Results obtained in this study were generally in agreement with those obtained using other taxonomic approaches, suggesting that FAME analysis provides a relatively simple and reliable procedure for the initial characterization of Bradyrhizobium isolates.Key words: fatty acid analysis, Bradyrhizobium taxonomy, FAME analysis, strain identification.


2021 ◽  
Author(s):  
Randy F Lacey ◽  
Blake A Sullivan-Hill ◽  
Julie R Deslippe ◽  
Robert A Keyzers ◽  
Monica L Gerth

Phytophthora diseases cause devastation to crops and native ecosystems worldwide. In New Zealand, Phytophthora agathidicida is threatening the survival of kauri, an endemic, culturally and ecologically important tree species. The current method for detecting P. agathidicida is a soil bating assay that is time-consuming and requires high levels of expertise to assess, thus limiting the analytical sample throughput. Here, we characterized the fatty acid methyl ester (FAME) profile of P. agathidicida. We also compared it with the FAME profile of P. cinnamomi and assessed the efficacy of FAME analysis as a diagnostic tool for detecting the pathogen in soil samples. In FAME analysis, the total fatty acid content is isolated from a sample and converted to FAMEs for analysis, a process that takes less than a day. Unique fatty acid acyl chains can serve as biomarkers for specific organisms. We detected 12 fatty acids in P. agathidicida, two of which (20:4ω6 and 20:5ω3) show promise as potential Phytophthora specific biomarkers. Collectively, these findings advance our fundamental understanding of P. agathidicida biology and provide a promising technique to increase the rate of sample processing and the speed of pathogen detection for P. agathidicida in soil.


2013 ◽  
Author(s):  
Jr Morris ◽  
Shardo Robert W. ◽  
Higgins James ◽  
Cook Kim ◽  
Tanner Rhonda ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document