Strategic flat rolling of Ag/BSCCO-2223 tapes

2002 ◽  
Vol 372-376 ◽  
pp. 966-969 ◽  
Author(s):  
M.S. Nielsen ◽  
J.I. Bech ◽  
M. Eriksen ◽  
N. Bay
Keyword(s):  
2012 ◽  
Vol 715-716 ◽  
pp. 89-95 ◽  
Author(s):  
Leo Kestens ◽  
Jurij J. Sidor ◽  
Roumen H. Petrov ◽  
Tuan Nguyen Minh

The sheet manufacturing process, which involves various solid-state transformations such as phase transformations, plastic deformation and thermally activated recovery processes, determines the texture of steel and aluminium sheet. The conventional process of flat rolling and annealing only offers limited degrees of freedom to modify the texture of the final product. After annealing a {111} recrystallization fibre in BCC alloys and a cube dominated recrystallization texture in FCC metals is commonly obtained. Many applications, however, require other texture components than the ones achievable by conventional processing. In the present paper it is shown that by asymmetric rolling of a Si-alloyed ultra-low carbon steel a texture can be obtained with increased intensity on the {001} fibre, which is of interest for magnetic applications. Also in aluminium alloys the strong cube annealing texture can be drastically modified by the process of asymmetric rolling. It is argued that by observing the proper rolling and annealing conditions a recrystallization texture with improved normal and planar anisotropy of the mechanical properties may be produced.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 405 ◽  
Author(s):  
Haibo Xie ◽  
Ken-ichi Manabe ◽  
Zhengyi Jiang

A comprehensive research on the flat rolling deformation characterization of microwire has been conducted systematically through finite element simulation and testified by the results from the experimental analysis. The obtained results are compared in terms of lateral spread, geometrical characteristic, contact area width and surface roughness considering the effects of pass reduction and initial wire diameter. The size effect has been identified and surface layer modeling has been set up based on surface grain share and grain size distribution. The numerical method combined with varied flow stress has been verified by experimental value with a maximum difference of 3.7% for the 1.5 mm wire. With the increase of the height reduction, the curvature radius is decreased while the lateral spread and contact area width are increased. Surface roughness evolution in the range of 0.52–0.85 µm for the rolled wire has also been investigated.


2017 ◽  
Vol 20 (3) ◽  
pp. 646-652
Author(s):  
Gilberto Thiago de Paula Costa ◽  
Carlos Augusto dos Santos
Keyword(s):  

2010 ◽  
Author(s):  
Jinseok Kim ◽  
Sangmoo Hwang ◽  
F. Barlat ◽  
Y. H. Moon ◽  
M. G. Lee
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document