Interrelationships between cutting force variation and tool wear in end-milling

2001 ◽  
Vol 109 (3) ◽  
pp. 229-235 ◽  
Author(s):  
A Sarhan ◽  
R Sayed ◽  
A.A Nassr ◽  
R.M El-Zahry
2013 ◽  
Vol 70 (9-12) ◽  
pp. 1835-1845 ◽  
Author(s):  
Junzhan Hou ◽  
Wei Zhou ◽  
Hongjian Duan ◽  
Guang Yang ◽  
Hongwei Xu ◽  
...  

2017 ◽  
Vol 867 ◽  
pp. 165-170
Author(s):  
Isha Srivastava ◽  
Ajay Batish

The aim of this study were to evaluate the performance of PVD (TiAlN+TiN) and CVD (TiCN+Al2O3+TiN) coated inserts in end milling of EN–31 hardened die steel of 43±1 HRC during dry and MQL (Minimum quantity lubrication) machining. The experiments were conducted at a fixed feed rate, depth of cut and varying cutting speed to measure the effect of cutting speed on cutting force and tool wear of CVD and PVD-coated inserts. The performance of CVD and PVD-coated inserts under dry and MQL condition by measuring the tool wear and cutting force were compared. During cutting operation, it was noticed that PVD inserts provide less cutting force and tool wear as compared to the CVD inserts under both dry as well as the MQL condition because PVD inserts have a thin insert coating and CVD inserts have a thick insert coating, but PVD inserts experience catastrophic failure during cutting operation whereas CVD inserts have a capability for continuous machining under different machining. Tool wear has measured by SEM analysis. The result shows that MQL machining provides the optimum results as compared to the dry condition. MQL machining has the ability to work under high cutting speed. As the cutting speed increases the performance of dry machining was decreased, but in MQL machining, the performance of the inserts was increased with increases of cutting speed. MQL machining generates less cutting force on the cutting zone and reduces the tool wear which further increase the tool life.


2016 ◽  
Vol 78 (6-10) ◽  
Author(s):  
N.H.M. Tahir ◽  
R. Muhammad ◽  
J. A. Ghani ◽  
M. Z. Nuawi ◽  
C. H. C. Haron

Tool condition monitoring (TCM) system in the industry are mainly used to detect tool wear, breakage and chatter on the tool. Tool wear of AISI P20 under various cutting conditions have been investigated in end milling using cutting force signals due flank wear progression. This study is focused on the piezoelectric sensor system which is integrated on rotating cutting tool for tool wear monitoring system in milling process. The signal captured by piezoelectric sensors are analyzed in time and frequency domain. The signal amplitudes of main cutting force, Fc in time domain are increased, while the peak of the amplitude in frequency domain is decreased as the flank wear and cutting speed increases. By using 3D I-kazTM statistical analysis method, the relationship and correlation between I-kaz coefficients, Z∞  values with resultant flank wear width data, VB are proved. The results show that 3D I-kazTM statistical analysis method can be effectively used to monitor tool wear progression using a wireless telemetry system during milling operations.


Author(s):  
Yuki Yamada ◽  
Yasuhiro Kakinuma ◽  
Takamichi Ito ◽  
Jun Fujita ◽  
Hirohiko Matsuzaki

Cutting force is widely regarded as being the one of the most valuable information for tool condition monitoring. Considering sustainability, sensorless cutting force monitoring technique using inner information of machine tool attracts attention. Cutting force estimation based on motor current is one of the example, and it is applicable to detection of tool breakage with some signal processing technique. However, current signal could not capture fast variation of cutting force. By improving monitoring performance of cutting force, the hidden tool condition information is more accessible. In this study, monitoring performance of cutting force variation due to tool fracture was enhanced by using multi-encoder-based disturbance observer (MEDOB) and simple moving average. Friction force and torque which deteriorate monitoring performance was eliminated by moving average. First, monitoring accuracy of cutting force was verified through end milling test. Next, local peak value of estimated cutting force was extracted and the ratio of neighboring peak value was calculated to capture the tool fracture. Estimated value using MEDOB could capture the variation resulting from tool fracture.


Sign in / Sign up

Export Citation Format

Share Document