Functional significance of inhibitory interactions between inhibitory interneurons in visual cortex

2000 ◽  
Vol 32-33 ◽  
pp. 425-432
Author(s):  
Vivek Khatri ◽  
Philip S. Ulinski
2013 ◽  
Vol 33 (28) ◽  
pp. 11372-11389 ◽  
Author(s):  
J. Zhuang ◽  
C. R. Stoelzel ◽  
Y. Bereshpolova ◽  
J. M. Huff ◽  
X. Hei ◽  
...  

2020 ◽  
Vol 30 (8) ◽  
pp. 4662-4676
Author(s):  
Kevin J Monk ◽  
Simon Allard ◽  
Marshall G Hussain Shuler

Abstract The primary sensory cortex has historically been studied as a low-level feature detector, but has more recently been implicated in many higher-level cognitive functions. For instance, after an animal learns that a light predicts water at a fixed delay, neurons in the primary visual cortex (V1) can produce “reward timing activity” (i.e., spike modulation of various forms that relate the interval between the visual stimulus and expected reward). Local manipulations to V1 implicate it as a site of learning reward timing activity (as opposed to simply reporting timing information from another region via feedback input). However, the manner by which V1 then produces these representations is unknown. Here, we combine behavior, in vivo electrophysiology, and optogenetics to investigate the characteristics of and circuit mechanisms underlying V1 reward timing in the head-fixed mouse. We find that reward timing activity is present in mouse V1, that inhibitory interneurons participate in reward timing, and that these representations are consistent with a theorized network architecture. Together, these results deepen our understanding of V1 reward timing and the manner by which it is produced.


2009 ◽  
Vol 102 (1) ◽  
pp. 9-11 ◽  
Author(s):  
James C. H. Cottam

Inhibitory interneurons are highly diverse, although the functional significance of their diversity is not yet well understood. This presents a barrier to understanding neural computation at the local circuit level. This review focuses on a recent study by Murayama et al. who used a novel in vivo technique in neocortex to demonstrate a specific sensory processing function of dendritic-targeting Martinotti interneurons. The function of Martinotti cells arises from their interaction with layer 5 pyramidal cell dendrites.


2013 ◽  
Vol 110 (4) ◽  
pp. 964-972 ◽  
Author(s):  
Agne Vaiceliunaite ◽  
Sinem Erisken ◽  
Florian Franzen ◽  
Steffen Katzner ◽  
Laura Busse

Responses of many neurons in primary visual cortex (V1) are suppressed by stimuli exceeding the classical receptive field (RF), an important property that might underlie the computation of visual saliency. Traditionally, it has proven difficult to disentangle the underlying neural circuits, including feedforward, horizontal intracortical, and feedback connectivity. Since circuit-level analysis is particularly feasible in the mouse, we asked whether neural signatures of spatial integration in mouse V1 are similar to those of higher-order mammals and investigated the role of parvalbumin-expressing (PV+) inhibitory interneurons. Analogous to what is known from primates and carnivores, we demonstrate that, in awake mice, surround suppression is present in the majority of V1 neurons and is strongest in superficial cortical layers. Anesthesia with isoflurane-urethane, however, profoundly affects spatial integration: it reduces the laminar dependency, decreases overall suppression strength, and alters the temporal dynamics of responses. We show that these effects of brain state can be parsimoniously explained by assuming that anesthesia affects contrast normalization. Hence, the full impact of suppressive influences in mouse V1 cannot be studied under anesthesia with isoflurane-urethane. To assess the neural circuits of spatial integration, we targeted PV+ interneurons using optogenetics. Optogenetic depolarization of PV+ interneurons was associated with increased RF size and decreased suppression in the recorded population, similar to effects of lowering stimulus contrast, suggesting that PV+ interneurons contribute to spatial integration by affecting overall stimulus drive. We conclude that the mouse is a promising model for circuit-level mechanisms of spatial integration, which relies on the combined activity of different types of inhibitory interneurons.


1994 ◽  
Vol 11 (5) ◽  
pp. 953-977 ◽  
Author(s):  
M. Kitano ◽  
K. Niiyama ◽  
T. Kasamatsu ◽  
E. E. Sutter ◽  
A. M. Norcia

AbstractTwo types of field potentials were identified in cat visual cortex using contrast reversal of oriented bar gratings: a short-latency fast-local component with a retinotopic organization similar to that seen with single-unit discharges at the same cortical site, and a slow, nonretinotopic component with a longer peak latency. The slow-distributed component had an extensive receptive field mapped by measuring the amplitude of binary kernels and showed strong inhibitory interactions within the receptive field. The peak latency of the slow-local component increased with distance from the retinotopic center, suggesting a possible conduction delay. Both components showed some orientation bias depending on the laminar location, but the bias could be independent of the orientation preferred by single units in the immediate vicinity. The present findings indicate that locally generated field potentials reflect cortical mechanisms for nonlinear integration over wide areas of the visual field.


2021 ◽  
Author(s):  
Viktoriya Manyukhina ◽  
Ekaterina Rostovtseva ◽  
Andrey Prokofyev ◽  
Tatiana Obukhova ◽  
Justin Schneiderman ◽  
...  

Abstract Gamma oscillations are driven by local cortical excitatory (E) - inhibitory (I) loops and may help to characterize neural processing involving excitatory-inhibitory interactions. In the visual cortex reliable gamma oscillations can be recorded with magnetoencephalography (MEG) in the majority of individuals, which makes visual gamma an attractive candidate for biomarkers of brain disorders associated with E/I imbalance. Little is known, however, about if/how these oscillations reflect individual differences in neural excitability and associated sensory/perceptual phenomena. The power of visual gamma response (GR) changes nonlinearly with increasing stimulation intensity: it increases with transition from static to slowly drifting high-contrast grating and then attenuates with further increase in the drift rate. In a recent MEG study we found that the GR attenuation predicted sensitivity to sensory stimuli in everyday life in neurotypical adult men and in men with autism spectrum disorders. Here, we replicated these results in neurotypical female participants. The GR enhancement with transition from static to slowly drifting grating did not correlate significantly with the sensory sensitivity measures. These findings suggest that weak velocity-related attenuation of the GR is a reliable neural concomitant of visual hypersensitivity and that the degree of GR attenuation may provide useful information about E/I balance in the visual cortex.


Sign in / Sign up

Export Citation Format

Share Document