scholarly journals Composition series for analytic continuations of holomorphic discrete series representations of SUp,q

2001 ◽  
Vol 15 (3) ◽  
pp. 221-252 ◽  
Author(s):  
Raj Wilson
1998 ◽  
Vol 10 (04) ◽  
pp. 467-497
Author(s):  
Amine M. El Gradechi

We investigate the notion of super-unitarity from a functional analytic point of view. For this purpose we consider examples of explicit realizations of a certain type of irreducible representations of low rank orthosymplectic Lie superalgebras which are super-unitary by construction. These are the so-called superholomorphic discrete series representations of osp (1/2,ℝ) and osp (2/2,ℝ) which we recently constructed using a ℤ2–graded extension of the orbit method. It turns out here that super-unitarity of these representations is a consequence of the self-adjointness of two pairs of anticommuting operators which act in the Hilbert sum of two Hilbert spaces each of which carrying a holomorphic discrete series representation of su (1,1) such that the difference of the respective lowest weights is [Formula: see text]. At an intermediate stage, we show that the generators of the considered orthosymplectic Lie superalgebras can be realized either as matrix-valued first order differential operators or as first order differential superoperators. Even though the former realization is less convenient than the latter from the computational point of view, it has the advantage of avoiding the use of anticommuting Grassmann variables, and is moreover important for our analysis of super-unitarity. The latter emphasizes the fundamental role played by the atypical (or degenerate) superholomorphic discrete series representations of osp (2/2,ℝ) for the super-unitarity of the other representations considered in this work, and shows that the anticommuting (unbounded) self-adjoint operators mentioned above anticommute in a proper sense, thus connecting our work with the analysis of supersymmetric quantum mechanics.


2011 ◽  
Vol 07 (08) ◽  
pp. 2115-2137 ◽  
Author(s):  
ZHI QI ◽  
CHANG YANG

We construct and study the holomorphic discrete series representations and the principal series representations of the symplectic group Sp (2n, F) over a p-adic field F as well as a duality between some sub-representations of these two representations. The constructions of these two representations generalize those defined in Morita and Murase's works. Moreover, Morita built a duality for SL (2, F) defined by residues. We view the duality we defined as an algebraic interpretation of Morita's duality in some extent and its generalization to the symplectic groups.


1979 ◽  
Vol 31 (4) ◽  
pp. 836-844 ◽  
Author(s):  
Joe Repka

We discuss the decomposition of tensor products of holomorphic discrete series representations, generalizing a technique used in [9] for representations of SL2(R), based on a suggestion of Roger Howe. In the case of two representations with highest weights, the discussion is entirely algebraic, and is best formulated in the context of generalized Verma modules (see § 3). In the case when one representation has a highest weight and the other a lowest weight, the approach is more analytic, relying on the realization of these representations on certain spaces of holomorphic functions.For a simple group, these two cases exhaust the possibilities; for a nonsimple group, one has to piece together representations on the various factors.The author wishes to thank Roger Howe and Jim Lepowsky for very helpful conversations, and Nolan Wallach for pointing out the work of Eugene Gutkin (Thesis, Brandeis University, 1978), from which some of the results of this paper can be read off as easy corollaries.


Author(s):  
Stefan Berceanu ◽  
Alexandru Gheorghe

This is the summary of a part of the talk delivered at the workshop held at the Tambov University in September 2012, reporting several results on Jacobi groups and its holomorphic representations published by the authors.


2019 ◽  
Vol 18 (07) ◽  
pp. 1950125
Author(s):  
Benjamin Cahen

We recover the holomorphic discrete series representations of [Formula: see text] as well as some unitary irreducible representations of [Formula: see text] by deformation of a minimal realization of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document