Symmetry Integrability and Geometry Methods and Applications
Latest Publications


TOTAL DOCUMENTS

1799
(FIVE YEARS 364)

H-INDEX

16
(FIVE YEARS 3)

Published By Sigma

1815-0659

Author(s):  
Eric J. Pap ◽  
◽  
Daniël Boer ◽  
Holger Waalkens ◽  
◽  
...  

We present a formal geometric framework for the study of adiabatic quantum mechanics for arbitrary finite-dimensional non-degenerate Hamiltonians. This framework generalizes earlier holonomy interpretations of the geometric phase to non-cyclic states appearing for non-Hermitian Hamiltonians. We start with an investigation of the space of non-degenerate operators on a finite-dimensional state space. We then show how the energy bands of a Hamiltonian family form a covering space. Likewise, we show that the eigenrays form a bundle, a generalization of a principal bundle, which admits a natural connection yielding the (generalized) geometric phase. This bundle provides in addition a natural generalization of the quantum geometric tensor and derived tensors, and we show how it can incorporate the non-geometric dynamical phase as well. We finish by demonstrating how the bundle can be recast as a principal bundle, so that both the geometric phases and the permutations of eigenstates can be expressed simultaneously by means of standard holonomy theory.


Author(s):  
Takashi Aoki ◽  
◽  
Shofu Uchida ◽  

Voros coefficients of the generalized hypergeometric differential equations with a large parameter are defined and their explicit forms are given for the origin and for the infinity. It is shown that they are Borel summable in some specified regions in the space of parameters and their Borel sums in the regions are given.


Author(s):  
Dmitry Korotkin ◽  
◽  
Peter Zograf ◽  

The Bergman tau functions are applied to the study of the Picard group of moduli spaces of quadratic differentials with at most n simple poles on genus g complex algebraic curves. This generalizes our previous results on moduli spaces of holomorphic quadratic differentials.


Author(s):  
Mikhail D. Minin ◽  
◽  
Andrei G. Pronko ◽  

We consider the six-vertex model with the rational weights on an s by N square lattice with partial domain wall boundary conditions. We study the one-point function at the boundary where the free boundary conditions are imposed. For a finite lattice, it can be computed by the quantum inverse scattering method in terms of determinants. In the large N limit, the result boils down to an explicit terminating series in the parameter of the weights. Using the saddle-point method for an equivalent integral representation, we show that as s next tends to infinity, the one-point function demonstrates a step-wise behavior; at the vicinity of the step it scales as the error function. We also show that the asymptotic expansion of the one-point function can be computed from a second-order ordinary differential equation.


Author(s):  
Nikolai Kitanine ◽  
◽  
Giridhar Kulkarni ◽  
◽  
◽  
...  

In this article we study the thermodynamic limit of the form factors of the XXX Heisenberg spin chain using the algebraic Bethe ansatz approach. Our main goal is to express the form factors for the low-lying excited states as determinants of matrices that remain finite dimensional in the thermodynamic limit. We show how to treat all types of the complex roots of the Bethe equations within this framework. In particular we demonstrate that the Gaudin determinant for the higher level Bethe equations arises naturally from the algebraic Bethe ansatz.


Author(s):  
Satoru Urano ◽  

We introduce a generalization of Brauer character to allow arbitrary finite length modules over discrete valuation rings. We show that the generalized super Brauer character of Tate cohomology is a linear combination of trace functions. Using this result, we find a counterexample to a conjecture of Borcherds about vanishing of Tate cohomology for Fricke elements of the Monster.


Author(s):  
Dmitry K. Demskoi ◽  

We treat the lattice sine-Gordon equation and two of its generalised symmetries as a compatible system. Elimination of shifts from the two symmetries of the lattice sine-Gordon equation yields an integrable NLS-type system. An auto-Bäcklund transformation and a superposition formula for the NLS-type system is obtained by elimination of shifts from the lattice sine-Gordon equation and its down-shifted version. We use the obtained formulae to calculate a superposition of two and three elementary solutions.


Sign in / Sign up

Export Citation Format

Share Document