A coupled symmetric BE–FE method for acoustic fluid–structure interaction

2002 ◽  
Vol 26 (7) ◽  
pp. 629-636 ◽  
Author(s):  
L. Gaul ◽  
W. Wenzel
2020 ◽  
Vol 17 (10) ◽  
pp. 2050013
Author(s):  
Fei Jiang ◽  
Kangping Liao ◽  
Kazuki Matsumura ◽  
Junji Ohgi ◽  
Xian Chen

A numerical framework is proposed to couple the finite element (FE) and lattice Boltzmann methods (LBM) for simulating fluid–structure interaction (FSI) problems. The LBM is used as an efficient method for solving the weakly-compressible fluid flows. The corotational FE method for beam elements is used to solve the thin plate deformation. The two methods are coupled via a direct-forcing immersed boundary (IB) method with a sub-iteration scheme. A virtual structure method has been developed to improve the computational accuracy. Validations of the proposed coupling method have been carried out by testing a vortex-induced vibration problem. The numerical results are in good agreement with [Li and Favier (2017), “A non-staggered coupling of finite element and lattice Boltzmann methods via an immersed boundary scheme for fluid-structure interaction,” Comput. Fluids 143, 90–102]. The proposed method does not require heavy linear algebra calculation, which is suitable for parallel computation.


1993 ◽  
Vol 115 (2) ◽  
pp. 152-158 ◽  
Author(s):  
A. F. Seybert ◽  
T. W. Wu ◽  
W. L. Li

In this paper, the finite element (FEM) and the boundary element method (BEM) are combined together to solve a class of fluid-structure interaction problems. The FEM is used to model the elastic structure and the BEM is used to model the acoustic fluid. Quadratic isoparametric elements are used in both the FEM and BEM models. Continuity conditions of pressure and normal velocity are enforced at the fluid-structure interface on which the normal vector is not required to be uniquely defined. An enhanced CHIEF formulation is adopted to overcome the nonuniqueness difficulty at critical frequencies. To reduce the dimension of the coupled structural acoustic equations, the structural displacement is approximated by a linear combination of either Ritz vectors or eigenvectors. An error norm and a participation factor are defined so that it is possible to evaluate the accuracy of a solution and to omit vectors with small participation factors. Example problems are solved to examine the accuracy of the numerical solutions and to compare the efficiency of the Ritz vector and eigenvector syntheses.


Sign in / Sign up

Export Citation Format

Share Document