error norm
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol 2021 (12) ◽  
pp. 124017
Author(s):  
Marc Vuffray ◽  
Sidhant Misra ◽  
Andrey Y Lokhov

Abstract Graphical models are useful tools for describing structured high-dimensional probability distributions. Development of efficient algorithms for learning graphical models with least amount of data remains an active research topic. Reconstruction of graphical models that describe the statistics of discrete variables is a particularly challenging problem, for which the maximum likelihood approach is intractable. In this work, we provide the first sample-efficient method based on the interaction screening framework that allows one to provably learn fully general discrete factor models with node-specific discrete alphabets and multi-body interactions, specified in an arbitrary basis. We identify a single condition related to model parametrization that leads to rigorous guarantees on the recovery of model structure and parameters in any error norm, and is readily verifiable for a large class of models. Importantly, our bounds make explicit distinction between parameters that are proper to the model and priors used as an input to the algorithm. Finally, we show that the interaction screening framework includes all models previously considered in the literature as special cases, and for which our analysis shows a systematic improvement in sample complexity.


Author(s):  
E. S. Shoukralla ◽  
Nermin Saber ◽  
Ahmed Y. Sayed

AbstractIn this study, we applied an advanced barycentric Lagrange interpolation formula to find the interpolate solutions of weakly singular Fredholm integral equations of the second kind. The kernel is interpolated twice concerning both variables and then is transformed into the product of five matrices; two of them are monomial basis matrices. To isolate the singularity of the kernel, we developed two techniques based on a good choice of different two sets of nodes to be distributed over the integration domain. Each set is specific to one of the kernel arguments so that the kernel values never become zero or imaginary. The significant advantage of thetwo presented techniques is the ability to gain access to an algebraic linear system equivalent to the interpolant solution without applying the collocation method. Moreover, the convergence in the mean of the interpolant solution and the maximum error norm estimation are studied. The interpolate solutions of the illustrated four examples are found strongly converging uniformly to the exact solutions.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7831
Author(s):  
Xuan Liu ◽  
Muhammad Ahsan ◽  
Masood Ahmad ◽  
Muhammad Nisar ◽  
Xiaoling Liu ◽  
...  

This article is concerned with the numerical solution of nonlinear hyperbolic Schro¨dinger equations (NHSEs) via an efficient Haar wavelet collocation method (HWCM). The time derivative is approximated in the governing equations by the central difference scheme, while the space derivatives are replaced by finite Haar series, which transform it to full algebraic form. The experimental rate of convergence follows the theoretical statements of convergence and the conservation laws of energy and mass are also presented, which strengthens the proposed method to be convergent and conservative. The Haar wavelets based on numerical results for solitary wave shape of |φ| are discussed in detail. The proposed approach provides a fast convergent approximation to the NHSEs. The reliability and efficiency of the method are illustrated by computing the maximum error norm and the experimental rate of convergence for different problems. Comparisons are performed with various existing methods in recent literature and better performance of the proposed method is shown in various tables and figures.


Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2871
Author(s):  
Gaoxu Deng ◽  
Shiqian Wu ◽  
Shiyang Zhou ◽  
Bin Chen ◽  
Yucheng Liao

Weighted least-squares (WLS) phase unwrapping is widely used in optical engineering. However, this technique still has issues in coping with discontinuity as well as noise. In this paper, a new WLS phase unwrapping algorithm based on the least-squares orientation estimator (LSOE) is proposed to improve phase unwrapping robustness. Specifically, the proposed LSOE employs a quadratic error norm to constrain the distance between gradients and orientation vectors. The estimated orientation is then used to indicate the wrapped phase quality, which is in terms of a weight mask. The weight mask is calculated by post-processing, including a bilateral filter, STDS, and numerical relabeling. Simulation results show that the proposed method can work in a scenario in which the noise variance is 1.5. Comparisons with the four WLS phase unwrapping methods indicate that the proposed method provides the best accuracy in terms of segmentation mean error under the noisy patterns.


2021 ◽  
Author(s):  
Emil Shoukralla ◽  
Nermin Saber ◽  
Ahmed Yehia Sayed

Abstract In this study, we applied an advanced barycentric Lagrange interpolation formula to find the interpolate solutions of weakly singular ‎Fredholm integral equations of the ‎second kind. The kernel is ‎interpolated twice concerning ‎both variables and then is transformed into the product of five ‎matrices; two of them are monomial basis ‎matrices. To isolate the singularity of the kernel, we ‎developed two techniques based on a good choice of ‎different two sets of nodes to be distributed ‎over the integration domain. Each set is specific to one of the ‎kernel arguments so that the kernel ‎values never become zero or imaginary. The significant advantage of the ‎two presented ‎techniques is the ability to gain ‎‎access to an algebraic linear system equivalent to the interpolant solution without applying the collocation method. Moreover, the convergence in the ‎mean of the interpolant solution ‎and the maximum error norm estimation are studied. The ‎interpolate solutions of the illustrated four ‎examples are found strongly converging uniformly to the ‎exact solutions.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Varun Joshi ◽  
Mamta Kapoor ◽  
Nitin Bhardwaj ◽  
Mehedi Masud ◽  
Jehad F. Al-Amri

In this paper, a new numerical method named Barycentric Lagrange interpolation-based differential quadrature method is implemented to get numerical solution of 1D and 2D coupled nonlinear Schrödinger equations. In the present study, spatial discretization is done with the aid of Barycentric Lagrange interpolation basis function. After that, a reduced system of ordinary differential equations is solved using strong stability, preserving the Runge-Kutta 43 method. In order to check the accuracy of the proposed scheme, we have used the formula of L ∞ error norm. The matrix stability analysis method is implemented to test the proposed method’s stability, which confirms that the proposed scheme is unconditionally stable. The present scheme produces better results, and it is easy to implement to obtain numerical solutions of a class of partial differential equations.


2021 ◽  
Author(s):  
Lun H. Mark

This thesis investigates how geometry of complex objects is related to LIDAR scanning with the Iterative Closest Point (ICP) pose estimation and provides statistical means to assess the pose accuracy. LIDAR scanners have become essential parts of space vision systems for autonomous docking and rendezvous. Principal Componenet Analysis based geometric constraint indices have been found to be strongly related to the pose error norm and the error of each individual degree of freedom. This leads to the development of several strategies for identifying the best view of an object and the optimal combination of localized scanned areas of the object's surface to achieve accurate pose estimation. Also investigated is the possible relation between the ICP pose estimation accuracy and the districution or allocation of the point cloud. The simulation results were validated using point clouds generated by scanning models of Quicksat and a cuboctahedron using Neptec's TriDAR scanner.


2021 ◽  
Author(s):  
Lun H. Mark

This thesis investigates how geometry of complex objects is related to LIDAR scanning with the Iterative Closest Point (ICP) pose estimation and provides statistical means to assess the pose accuracy. LIDAR scanners have become essential parts of space vision systems for autonomous docking and rendezvous. Principal Componenet Analysis based geometric constraint indices have been found to be strongly related to the pose error norm and the error of each individual degree of freedom. This leads to the development of several strategies for identifying the best view of an object and the optimal combination of localized scanned areas of the object's surface to achieve accurate pose estimation. Also investigated is the possible relation between the ICP pose estimation accuracy and the districution or allocation of the point cloud. The simulation results were validated using point clouds generated by scanning models of Quicksat and a cuboctahedron using Neptec's TriDAR scanner.


2021 ◽  
Author(s):  
Alexander Frias

This dissertation investigates the nonlinear control of the attitude for an underactuated rigid-body spacecraft system in the body-orbital and inertial frames. The problem involving the stabilization of the body-orbital attitude of an underactuated output-feedback system is examined. Using sliding mode control in conjunction with finite-time nonlinear observer, a novel observer-based control law is rigorously analyzed and proven to achieve attitude convergence. Under time-varying disturbances, inertia matrix uncertainties, and high initial errors, the proposed novel law achieves attitude convergence for three-axis stability and ultimate boundedness within 5 degrees and 0.01 deg/s, for attitude error norm and angular velocity norm, respectively. Next, the attitude control problem is rigorously analyzed in the inertial frame, where the underactuated rigid-body spacecraft system equations of motion are highly nonlinear, and the linearized equations of motion are not controllable. To this end, a generalized velocity-free time-varying state feedback controller is developed to achieve globally exponential stability with respect to the homogenous norm and proven to provide ultimate boundedness of all signals with 5 degrees attitude error norm and 0.5 rad/s angular velocity error norm. Finally, the inertial frame attitude stabilization problem is treated as an optimal control problem. For this case, the Legendre pseudospectral method is used to discretized the spacecraft dynamics into Legendre-Gauss-Lobatto (LGL) node points, where the Lagrange polynomial interpolation is applied to obtain a suitable candidate optimal control sequence. Model predictive control is used to implement the optimal control in predefined control windows sequentially to achieve three-axis stability for a rest-to-rest maneuver within 0.3 orbit.


2021 ◽  
Author(s):  
Alexander Frias

This dissertation investigates the nonlinear control of the attitude for an underactuated rigid-body spacecraft system in the body-orbital and inertial frames. The problem involving the stabilization of the body-orbital attitude of an underactuated output-feedback system is examined. Using sliding mode control in conjunction with finite-time nonlinear observer, a novel observer-based control law is rigorously analyzed and proven to achieve attitude convergence. Under time-varying disturbances, inertia matrix uncertainties, and high initial errors, the proposed novel law achieves attitude convergence for three-axis stability and ultimate boundedness within 5 degrees and 0.01 deg/s, for attitude error norm and angular velocity norm, respectively. Next, the attitude control problem is rigorously analyzed in the inertial frame, where the underactuated rigid-body spacecraft system equations of motion are highly nonlinear, and the linearized equations of motion are not controllable. To this end, a generalized velocity-free time-varying state feedback controller is developed to achieve globally exponential stability with respect to the homogenous norm and proven to provide ultimate boundedness of all signals with 5 degrees attitude error norm and 0.5 rad/s angular velocity error norm. Finally, the inertial frame attitude stabilization problem is treated as an optimal control problem. For this case, the Legendre pseudospectral method is used to discretized the spacecraft dynamics into Legendre-Gauss-Lobatto (LGL) node points, where the Lagrange polynomial interpolation is applied to obtain a suitable candidate optimal control sequence. Model predictive control is used to implement the optimal control in predefined control windows sequentially to achieve three-axis stability for a rest-to-rest maneuver within 0.3 orbit.


Sign in / Sign up

Export Citation Format

Share Document